MATH 2201 A

Introduction to Linear Algebra

Monday, Wednesday 3:00 - 4:15

Instructional Complex 422

Syllabus (PDF File)

 

NOTE:  This is in PDF format and requires Adobe Acrobat Reader to view.  You may download Adobe Acrobat Reader at http://www.adobe.com/products/acrobat/readstep.html.

 

NOTE:  In Linear Algebra, we will be proving theorems and statements (both in class and for homework).  Since you may not be familiar with some of the ideas of mathematical proofs, I have collected a few internet resources to help you.  These resources discuss the general ideas and techniques of mathematical proof and give examples.  I encourage you to read one or more of these during the first two weeks of the semester.  The links are below.

·        A Few Words About Proofs (PDF File)

·        Writing Proofs (PDF File)

·        How to Write Proofs

·        Notes on Methods of Proof

·        Conventions for Writing Mathematical Proofs (PDF File)

·        Writing Proofs (PDF File)

 

TEST I – Take-Home Part (PDF File)

 

Study Guide for TEST I – In-Class Portion (PDF File)

Study Guide for TEST II – In-Class Portion (PDF File)

Study Guide for TEST III – In-Class Portion (PDF File)

Study Guide for Final Exam (PDF File)

 

POWER POINT PRESENTATIONS

NOTE:  These Power Point Presentations are saved as PDF files.

 

Chapter 1:  Systems of Linear Equations and Matrices

     Section 1.1:  Introduction to Systems of Linear Equations

     Section 1.2:  Gaussian Elimination

     Section 1.3:  Matrices and Matrix Operations

     Section 1.4:  Inverses; Algebraic Properties of Matrices

     Section 1.5:  Elementary Matrices and a Method for Finding A−1

     Section 1.6:  More on Linear Systems and Invertible Matrices

     Section 1.7:  Diagonal, Triangular, and Symmetric Matrices

 

Chapter 2:  Determinants

     Section 2.1:  Determinants by Cofactor Expansion

     Section 2.2:  Evaluating Determinants by Row Reduction

     Section 2.3:  Properties of the Determinants; Cramer’s Rule

 

Chapter 3:  Euclidean Vector Spaces

     Section 3.1:  Vectors in 2-Space, 3-Space, and n-Space

     Section 3.2:  Norm, Dot Product, and Distance in Rn

     Section 3.3:  Orthogonality

     Section 3.4:  The Geometry of Linear Systems

     Section 3.5:  Cross Product

 

Chapter 4:  General Vector Spaces

     Section 4.1:  Real Vector Spaces

     Section 4.2:  Subspaces

     Section 4.3:  Linear Independence

     Section 4.4:  Coordinates and Basis

     Section 4.5:  Dimension

     Section 4.6:  Change of Basis

     Section 4.7:  Row Space, Column Space, and Null Space

     Section 4.8:  Rank, Nullity, and the Fundamental Matrix Spaces

     Section 4.9:  Matrix Transformations from Rn to Rm

     Section 4.10:  Properties of Matrix Transformations

 

Chapter 5:  Eigenvalues and Eigenvectors

     Section 5.1:  Eigenvalues and Eigenvectors

     Section 5.2:  Diagonalization

 

Chapter 6:  Inner Product Spaces

     Section 6.1:  Inner Products

     Section 6.2:  Angles and Orthogonality in Inner Product Spaces

     Section 6.3:  Orthonomral Bases; Gram-Schmidt Process; QR-Decomposistion

 

Chapter 7:  Diagonalization and Quadratic Forms

     Section 7.1:  Orthogonal Matrices

     Section 7.2:  Orthogonal Diagonalization