Section 4.10

Properties of Matrix Transforms

COMPOSITION OF MATRIX TRANSFORMATIONS

If $T_A \colon R^n \to R^k$ and $T_B \colon R^k \to R^m$ are linear transformations, then the application of T_A followed by T_B produces a transformation from R^n to R^m . This transformation is called the ${\bf composition \ of \ } T_B {\bf with \ } T_A$, and is denoted by $T_B \circ T_A$. Thus,

$$(T_{\scriptscriptstyle R} \circ T_{\scriptscriptstyle A})(\mathbf{x}) = T_{\scriptscriptstyle R}(T_{\scriptscriptstyle A}(\mathbf{x}))$$

$T_B \circ T_A$ IS A MATRIX TRANSFORM

The composition $T_B \circ T_A$ is a matrix transform since

$$(T_B \circ T_A)(\mathbf{x}) = T_B(T_A(\mathbf{x}))$$
$$= B(A\mathbf{x})$$
$$= (BA)\mathbf{x}$$

The above formula also tells us that the standard matrix for $T_B \circ T_A$ is BA. That is,

$$T_B \circ T_A = T_{BA}$$

COMPOSITIONS OF THREE OR MORE MATRIX TRANSFORMATIONS

Compositions can be defined analogously for three or more matrix transformations.

$$(T_3 \circ T_2 \circ T_1)(\mathbf{x}) = T_3(T_2(T_1(\mathbf{x})))$$

Or,

$$T_C \circ T_R \circ T_A = T_{CRA}$$

ONE-TO-ONE TRANSFORMATIONS

A matrix transformation $T_A: R^n \to R^m$ is said to be **one-to-one** if T_A maps distinct vectors (points) in R^n to distinct vectors (points) in R^m .

THREE EQUIVALENT STATEMENTS

Theorem 4.3.1: If *A* is an *n n* matrix and $T_A: R^n \to R^n$ is the corresponding matrix operator, then the following statements are equivalent.

- (a) A is invertible.
- (b) The range of T_A is R^n .
- (c) T_A is one-to-one.

NOTE: This extends our "big theorem."

INVERSE OF A 1-1 MATRIX OPERATOR

If $T_A: R^n \to R^n$ is a one-to-one matrix operator, then [T] = A is invertible.

The matrix operator $T_{A^{-1}}: R^n \to R^n$ is called the inverse operator of T_A .

<u>Notation</u>: The inverse of T is denoted by T^{-1} and its standard matrix is $[T^{-1}] = [T]^{-1}$

PROPERTIES OF MATRIX TRANSFORMATIONS

Theorem 4.10.2: $T: R^n \to R^m$ is a matrix transformation if and and only if the following relationships hold for all vectors \mathbf{u} and \mathbf{v} in R^n and every scalar k.

- (a) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ [Additivity property]
- (b) $T(k\mathbf{u}) = k T(\mathbf{u})$ [Homogeneity property]

LINEAR TRANSFORMS

The additivity and homogeneity properties in Theorem 4.10.2 are called <u>linearity conditions</u>, and a transformation that satisfies these conditions is called a <u>linear transformation</u>.

RELATIONSHIP BETWEEN LINEAR AND MATRIX TRANSFORMS

Theorem 4.10.3: Every linear transformation from R^n to R^m is a matrix transformation, and conversely, ever matrix transformation from R^n to R^m is a linear transformation.

THE "BIG" THEOREM

<u>Theorem 4.10.4</u>: If A is an n matrix, then the following are equivalent.

- (a) A is invertible
- (b) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (c) The reduced row-echelon form of A is I_n .
- (d) A is expressible as a product of elementary matrices.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \mid 1$ matrix \mathbf{b} .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \mid 1$ matrix \mathbf{b} .
- (g) $det(A) \neq 0$
- (h) The column vectors of A are linearly independent.
- (i) The row vectors of A are linearly independent.

THE "BIG" THEOREM (CONCLUDED)

- (j) The column vectors of A span Rⁿ.
- (k) The row vectors of A span \mathbb{R}^n .
- The column vectors of A form a basis for Rⁿ.
- (m) The row vectors of A form a basis for R^n .
- (n) A has rank n.
- (o) A has nullity 0.
- (p) The orthogonal complement of the null space of A is \mathbb{R}^n .
- (q) The orthogonal complement of the row space of A is [0].
- (r) The range of T_A is \mathbb{R}^n .
- (s) T_A is one-to-one.