Section 1.6

More on Linear Systems and Invertible Matrices

SOLUTIONS TO LINEAR SYSTEMS

Theorem 1.6.1: Every system of linear equations has either

- no solutions,
- exactly one solution, or
- infinitely many solutions.

SOLVING A SYSTEM BY MATRIX INVERSION

Theorem 1.6.2: If *A* is an invertible $n \times n$ matrix, then for each $n \times 1$ matrix **b**, the system of equations

 $A\mathbf{v} = \mathbf{h}$

has exactly one solution, namely,

 $x = A^{-1}b$.

SQUARE MATRICES AND INVERSES

Theorem 1.6.3: Let *A* be a square matrix.

- (a) If B is a square matrix satisfying BA = I, then $B = A^{-1}$.
- (b) If B is a square matrix satisfying AB = I, then $B = A^{-1}$.

EQUIVALENT STATEMENTS

Theorem 1.6.4: If *A* is an $n \times n$ matrix, then the following statements are equivalent; that is, all are true or all are false.

- (a) A is invertible.
- (b) Ax = 0 has only the trivial solution.
- (c) The reduced row-echelon form of A is I_n .
- (d) A is expressible as a product of elementary matrices.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .

INVERTIBILITY OF A PRODUCT

Theorem 1.6.5: Let *A* and *B* be square matrices of the same size. If the product *AB* is invertible, then *A* and *B* must also be invertible.