Section 3.2

Norm, Dot Product, and Distance in \mathbb{R}^n

NORM OF A VECTOR

The length of a vector \mathbf{v} is often called the <u>norm</u> of \mathbf{v} and is denoted by $||\mathbf{v}||$. By the Pythagorean Theorem, we have

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2}$$
 if $\mathbf{v} = (v_1, v_2)$ in 2-space

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$
 if $\mathbf{v} = (v_1, v_2, v_3)$ in 3-space

NORM OF A VECTOR IN Rⁿ

If $\mathbf{v} = (v_1, v_2, \dots, v_n)$ is a vector in \mathbb{R}^n , then the **norm** of \mathbf{v} (also called the **length** of \mathbf{v} or the **magnitude** of \mathbf{v}) is denoted by $||\mathbf{v}||$, and is defined by the formula

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

THEOREM 3.2.1

<u>Theorem 3.2.1</u>: If \mathbf{v} is a vector in \mathbb{R}^n , and if k is any scalar, then:

- (a) $\|\mathbf{v}\| \ge 0$
- (b) $||\mathbf{v}|| = 0$ if and only if $\mathbf{v} = \mathbf{0}$
- (c) $||k\mathbf{v}|| = |k| ||\mathbf{v}||$

UNIT VECTORS

A vector of length 1 is called a <u>unit vector</u>.

If \mathbf{v} is any nonzero vector in \mathbb{R}^n , then

$$\mathbf{u} = \frac{1}{\parallel \mathbf{v} \parallel} \mathbf{v} = \frac{\mathbf{v}}{\parallel \mathbf{v} \parallel}$$

defines a unit vector that is in the same direction as **v**.

STANDARD UNIT VECTORS

When a rectangular coordinate system is introduced in R^2 and R^3 , the unit vectors in the positive directions of the coordinate axes are called the **standard unit vectors**. In R^2 , these vectors are denoted by

$$i = (1, 0)$$
 and $j = (0, 1)$

and in R^3 by

$$\mathbf{i} = (1, 0, 0), \quad \mathbf{j} = (0, 1, 0), \quad \text{and} \quad \mathbf{k} = (0, 0, 1)$$

STANDARD UNIT VECTORS (CONCLUDED)

In \mathbb{R}^n , the standard unit vectors in \mathbb{R}^n are defined to be

$$\mathbf{e}_1 = (1, 0, 0, \dots, 0), \ \mathbf{e}_2 = (0, 1, 0, \dots, 0),$$

 $\dots, \ \mathbf{e}_n = (0, 0, 0, \dots, 1)$

in which case every vector $\mathbf{v} = (v_1, v_2, \dots, v_n)$ in Rn can be expressed as

$$\mathbf{v} = (v_1, v_2, \dots, v_n) =$$

$$v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n$$

DISTANCE BETWEEN VECTORS

If $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are points in Rn, then we denote the distance between \mathbf{u} and \mathbf{v} by $d(\mathbf{u}, \mathbf{v})$ and define it to be

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{(u_2 - v_1)^2 + (u_2 - v_1)^2 + \dots + (u_n - v_n)^2}$$

THE DOT PRODUCT IN R² AND R³

If \mathbf{u} and \mathbf{v} are nonzerp vectors in R^2 or R^3 , and if θ is the angle between \mathbf{u} and \mathbf{v} , then the **dot product** (also called the **Euclidean inner product**) of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ and is defined as

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$$

If $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$, then we define $\mathbf{u} \cdot \mathbf{v}$ to be 0.

THE DOT PRODUCT IN Rⁿ

If $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are any vectors in \mathbb{R}^n , then the **dot product** (also called the **Euclidean inner product**) of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ and is defined by

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n.$$

THE DOT PRODUCT AND NORM

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

PROPERTIES OF THE DOT PRODUCT

Theorem 3.2.2: If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is any scalar, then:

(a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ [Symmetric property]

(b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ [Distributive property]

(c) $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (k\mathbf{v})$ [Homogeneity property]

(c) N(u v) (Nu) v u (Nv) [Homogenery property]

[Positivity property]

and $\mathbf{v} \cdot \mathbf{v} = 0$ if $\mathbf{v} = \mathbf{0}$

(d) $\mathbf{v} \cdot \mathbf{v} > 0 \text{ if } \mathbf{v} \neq \mathbf{0}$,

MORE PROPERTIES OF THE DOT PRODUCT

Theorem 3.2.3: If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is any scalar, then:

- (a) $\mathbf{0} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{0} = 0$
- (b) $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
- (c) $\mathbf{u} \cdot (\mathbf{v} \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} \mathbf{u} \cdot \mathbf{w}$
- (d) $(\mathbf{u} \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{v} \mathbf{u} \cdot \mathbf{w}$
- (e) $k(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (k\mathbf{v})$

THE ANGLE BETWEEN VECTORS IN Rⁿ

We extend the idea of the angle between vectors to R^n by defining the angle θ between vectors \mathbf{u} and \mathbf{v} with the formula

$$\theta = \cos^{-1} \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \right)$$

CAUCHY-SCHWARZ INEQUALITY IN Rⁿ

Theorem 3.2.4: If $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n , then

$$|\mathbf{u}\cdot\mathbf{v}| \leq ||\mathbf{u}|| \, ||\mathbf{v}||.$$

THE TRIANGLE INEQUALITIES

Theorem 3.2.5: If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , then:

- (a) $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ [Triangle inequality for vectors]
- (b) $d(\mathbf{u}, \mathbf{v}) \le d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$ [Triangle inequality for distance]

PARALLELOGRAM EQUATION FOR VECTORS

<u>Theorem 3.2.6</u> Parallelogram Equation for Vectors: If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n , then

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2)$$

A THEOREM

<u>Theorem 3.2.7</u>: If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n with the Euclidean inner product, then

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{4} \|\mathbf{u} + \mathbf{v}\|^2 - \frac{1}{4} \|\mathbf{u} - \mathbf{v}\|^2$$