Section 6.2

Angles and Orthogonality in Inner Product Spaces

CAUCHY-SCHWARZ INEQUALITY

<u>Theorem 6.2.1</u>: If **u** and **v** are vectors in a real inner product space, then

$$|\langle u, v \rangle| \le ||u|| ||v||$$

NOTE: This result can be written as

$$\langle \mathbf{u}, \mathbf{v} \rangle^2 \leq \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$$

$$\langle \mathbf{u}, \mathbf{v} \rangle^2 \le ||\mathbf{u}||^2 ||\mathbf{v}||^2$$

ANGLE BETWEEN VECTORS

Recall in R^2 and R^3 , we noted that if θ is the angle between two vectors **u** and **v**, then

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

For an arbitrary inner product space we *define* the <u>angle</u> θ between u and v between two vectors u and v to be

$$\theta = \cos^{-1} \left(\frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \right)$$

PROPERTIES OF LENGTH AND DISTANCE

Theorem 6.2.2: If \mathbf{u} and \mathbf{v} are vectors in an inner product space V, and if k is a scalar, then:

(a)
$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$

[Triangle inequality for vectors]

(b)
$$d(\mathbf{u}, \mathbf{v}) \le d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$$

[Triangle inequality for distance]

ORTHOGONALITY

Two vectors **u** and **v** in an inner product space are called **orthogonal** if and only if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

GENERALIZED THEOREM OF PYTHAGORAS

Theorem 6.2.3: If **u** and **v** are orthogonal vectors in an inner product space, then

$$||\boldsymbol{u}+\boldsymbol{v}||^2=||\boldsymbol{u}||^2+||\boldsymbol{v}||^2$$

ORTHOGONAL COMPLEMENTS

Let W be a subspace of an inner product space V. A vector \mathbf{u} in V is said to be <u>orthogonal to W</u> if it is orthogonal to every vector in W. The set of all vectors in V that are orthogonal to W is called the <u>orthogonal complement</u> of W.

Notation:

We denote the orthogonal complement of a subspace W by W^{\perp} . [read "W perp"]

PROPERTIES OF ORTHOGONAL COMPLEMENTS

<u>Theorem 6.2.4</u>: If W is a subspace of an inner product space V, then

- (a) W^{\perp} is a subspace of V.
- (b) $W \cap W^{\perp} = [0].$

ANOTHER PROPERTY OF ORTHOGONAL COMPLEMENTS

Theorem 6.2.5: If W is a subspace of a finite-dimensional inner product space V, then the orthogonal complement of W^{\perp} is W; that is,

$$(W^{\perp})^{\perp} = W.$$