Section 1.4

Inverses; Rules of Matrix Arithmetic

THEOREM 1.4.1: PROPERTIES OF MATRIX ARITHMETIC

- (a) A + B = B + A (Commutative law for addition)
- (b) A + (B + C) = (A + B) + C (Associative law for add.)
- (c) A(BC) = (AB)C (Associative law for multiplication)
- (d) A(B+C) = AB + AC (Left distributive law)
- (e) (A + B)C = AC + BC (Right distributive law)
- (f) A(B-C) = AB AC
- (g) (A-B)C = AC BC
- (h) a(B+C) = aB + aC

THEOREM 1.4.1 (CONTINUED)

(i)
$$a(B-C) = aB - aC$$

(j)
$$(a+b)C = aC + bC$$

(k)
$$(a-b)C = aC - bC$$

(1)
$$a(bC) = (ab)C$$

(m)
$$a(BC) = (aB)C = B(aC)$$

<u>Note</u>: Since multiplication is *not* commutative, we need *two* distributive laws: the left distributive law and the right distributive law.

ZERO MATRICES

A <u>zero matrix</u> is a matrix that has zeros for all its entries. The zero matrix is denoted by θ .

Theorem 1.4.2: Properties of Zero Matrices

If *c* is a scalar, and if the sizes of the matrices are such that the operations can be performed, then:

(a)
$$A + 0 = 0 + A = A$$

(b)
$$A - A = 0$$

(c)
$$0 - A = -A$$

(d)
$$A0 = 0$$
; $0A = 0$

IDENTITY MATRICES

A square matrix that has 1's on the main diagonal and 0's off the main diagonal is called an **identity matrix**. The identity matrix is denoted by *I*.

Example: A 3×3 identity matrix.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note: An identity matrix has the property that

$$AI = IA = A$$
.

THEOREM

Theorem 1.4.3: If R is the reduced row-echelon form of an $n \times n$ matrix A, then either R has a row of zeros or R is the identity matrix I_n .

INVERSE OF A MATRIX

If A is a square matrix, and if a matrix B of the same size can be found such that

$$AB = BA = I$$

then A is said to be <u>invertible</u> (or <u>nonsingular</u>) and B is called an <u>inverse</u> of A.

If no such matrix B can be found, then A is said to be singular.

UNIQUENESS OF THE INVERSE

Theorem 1.4.4: If *B* and *C* are both inverses of A, then B = C.

Notation: For an invertible matrix A, we write its inverse as A^{-1} .

INVERSE OF A 2×2 MATRIX

Theorem 1.4.5: The matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible if $ad - bc \neq 0$, in which case the inverse is given by the formula

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

INVERTIBILITY OF A PRODUCT

<u>Theorem 1.4.6</u>: If *A* and *B* are invertible matrices of the same size, then *AB* is invertible and

$$(AB)^{-1} = B^{-1} A^{-1}$$

<u>Generalization</u>: A product of any number of invertible matrices is invertible, and the inverse of the product is the product of the inverses in the reverse order.

EXPONENTS

If *A* is a square matrix, then we define the nonnegative integer powers of *A* to be

$$A^0 = I$$
 $A^n = \underbrace{AA \cdots A}_{n \text{ factors}} \quad (n > 0)$

Moreover, if *A* is invertible, then we define the negative powers to be

$$A^{-n} = \underbrace{A^{-1}A^{-1}\cdots A^{-1}}_{n \text{ factors}}$$

TWO LAWS OF EXPONENTS

If A is a square matrix and r and s are integers, then

$$A^r A^s = A^{r+s},$$
 $(A^r)^s = A^{rs}$

LAWS OF EXPONENTS PART 2

<u>Theorem 1.4.7</u>: If A is an invertible matrix and n is a nonnegative integer, then:

- (a) A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- (b) A^n is invertible and $(A^n)^{-1} = A^{-n} = (A^{-1})^n$ for n = 1, 2, ...
- (c) For any nonzero scalar k, the matrix kA is invertible and $(kA)^{-1} = k^{-1}A^{-1} = \frac{1}{k}A^{-1}$.

PROPERTIES OF THE TRANSPOSE

<u>Theorem 1.4.8</u>: If the sizes of the matrices are such that the stated operations can be performed, then

- (a) $((A)^T)^T = A$
- (b) $(A+B)^T = A^T + B^T$ and $(A-B)^T = A^T B^T$
- (c) $(kA)^T = k(A^T)$ where k is any scalar
- (d) $(AB)^T = B^T A^T$

A GENERALIZATION

The transpose of any number of matrices is equal to the product of the transposes in the reverse order.

INVERTIBILITY AND TRANSPOSES

<u>Theorem 1.4.9</u>: If A is an invertible matrix, then A^T is also invertible and

$$(A^T)^{-1} = (A^{-1})^T$$