Section 4.1

Real Vector Spaces

DEFINITION OF A VECTOR SPACE

Let V be any non-empty set of objects on which two operations are defined: addition and multiplication by scalars (numbers).

The operation called <u>addition</u> is a rule that associates with each pair of objects \mathbf{u} and \mathbf{v} in V an object $\mathbf{u} + \mathbf{v}$, called the <u>sum</u> of \mathbf{u} and \mathbf{v} . The operation called <u>scalar multiplication</u> is a rule that associates with each scalar k and each object \mathbf{u} in V an object $k\mathbf{u}$, called the <u>scalar multiple</u> of \mathbf{u} by k.

If the following ten axioms are satisfied by all objects, \mathbf{u} , \mathbf{v} , \mathbf{w} in V and all scalars k and m, then we call V a vector space and the objects in V vectors.

If the scalars are *real* numbers, we call *V* a <u>real vector space</u>. If the scalars are *complex* numbers, we call *V* a <u>complex vector</u> space.

THE TEN VECTOR SPACE AXIOMS

- 1. If \mathbf{u} and \mathbf{v} are objects in V, then $\mathbf{u} + \mathbf{v}$ is in V.
- $2. \quad \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- 4. There is an object $\mathbf{0}$ in V, called a <u>zero vector</u> for V, such that $\mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u}$ for all \mathbf{u} in V.
- 5. For each \mathbf{u} in V, there is an object $-\mathbf{u}$ in V, called a negative of \mathbf{u} , such that $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + \mathbf{u} = \mathbf{0}$.
- 6. If k is any scalar and \mathbf{u} in any object in V, then $k\mathbf{u}$ is in V.
- 7. $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
- 8. $(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$
- 9. $k(m\mathbf{u}) = (km)\mathbf{u}$
- 10. $1\mathbf{u} = \mathbf{u}$

COMMENT ON VECTOR SPACE AXIOMS

The vector space axioms are divided into two parts.

- Axioms 1 through 5 concern vector addition.
- Axioms 6 through 10 concern scalar multiplication.

HOW TO SHOW A SET WITH TWO OPERATIONS IS A VECTOR SPACE

Step 1: Identify the set V of objects that will become vectors

<u>Step 2</u>: Identify the addition and scalar multiplication operations on V.

Step 3: Verify Axioms 1 and 6: that is, adding two vectors in *V* produces a vector in *V*, and multiplying a vector in *V* by a scalar produces a vector in *V*. Axiom 1 is called closure under addition, and Axiom 6 is called closure under scalar multiplication.

Step 4: Confirm that Axioms 2, 3, 4, 5, 7, 8, 9, and 10 hold.

EXAMPLES OF VECTOR SPACES

- *R*ⁿ together with standard vector addition and standard scalar multiplication
- M_{22} , the set of 2 2 matrices with standard matrix addition and scalar multiplication
- $F(-\infty, \infty)$, the set of all real-valued functions having domain $(-\infty, \infty)$ with standard addition and scalar multiplication

EXAMPLES (CONCLUDED)

- P₂, the set of all polynomials of degree at most 2, with standard polynomial addition and scalar multiplication
- $V = \{(v_1, v_2) | v_1, v_2 > 0\}$ with $(u_1, u_2) + (v_1, v_2) = (u_1v_1, u_2v_2)$ and $k(u_1, u_2) = (u_1^k, u_2^k)$
- The zero vector space.

EXAMPLES THAT ARE <u>NOT</u> VECTOR SPACES

- V = set of ordered triples with standardaddition and scalar multiplication defined by k(x, y, z) = (kx, y, z)
- $V = \{(x, y) \mid x \ge 0\}$ with standard addition and standard scalar multiplication

SOME PROPERTIES OF VECTORS

<u>Theorem 4.1.1</u>: Let V be a vector space, \mathbf{u} a vector in V, and k a scalar; then:

- (a) 0u = 0
- (b) k0 = 0
- (c) (-1)u = -u
- (d) If $k\mathbf{u} = \mathbf{0}$, then either k = 0 or $\mathbf{u} = \mathbf{0}$.

A CLOSING OBSERVATION

"This section of the [course] is very important to the overall plan of linear algebra in that it establishes a common thread between such diverse mathematical objects as geometric vectors, vectors in \mathbb{R}^n , infinite sequences, matrices, and real-valued functions, to name a few. As a result, whenever we discover a new theorem [or property] about general vector spaces, we will at the same time be discovering a new theorem [or property] about geometric vectors, vectors in \mathbb{R}^n , infinite sequences, matrices, real-valued functions, and about any new kinds of vectors that we might discover."