Section 1.1

Introduction to Systems of Linear Equations

LINEAR EQUATION

A <u>linear equation</u> is an equation with variables to the first power only. It can be expressed as

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$

EXAMPLES:

1.
$$2x + 5y = 3$$

2.
$$x_1 + 3x_2 - 2x_3 = 12$$

A solution to a linear equation is a set of numbers that makes the equation true. These may involve **parameters**.

HOMOGENEOUS LINEAR EQUATION

A linear equation is called <u>homogeneous</u> if it can be expressed as

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = 0.$$

EXAMPLE:

$$x - 2y - 3z + w = 0$$

SYSTEMS OF LINEAR EQUATIONS

A <u>system of linear equations</u> is a set of at least two of linear equations. We look for a solution that makes all equations true at the same time.

Example:
$$x_1 + 2x_2 = -1$$

 $x_1 + 2x_2 - x_3 = -4$

Note that $x_1 = -1$, $x_2 = 0$, and $x_3 = 3$ is a solution. The solution could also be expressed as (-1, 0, 3).

SOLUTIONS TO A SYSTEM

- If a system of equations has no solution, then it is called **inconsistent**.
- If a system of equations has at least one solution, then it is called **consistent**.

Every system of equations has either no solution, exactly one solution, or infinitely many solutions.

MATRICES

A <u>matrix</u> is a rectangular array (or table) of numbers.

EXAMPLE:

$$\begin{bmatrix} 3 & 4 & 0 & 5 \\ -1 & 3 & -7 & 6 \\ 2 & -4 & 8 & -9 \end{bmatrix}$$

AUGMENTED MATRICES

An <u>augmented matrix</u> can be used to write a system of equations. The system

$$x_1 + 2x_2 = -1$$

$$x_1 + 2x_2 - x_3 = -4$$

can be written as

$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ 1 & 2 & -1 & -4 \end{bmatrix}$$

ELEMENTARY ROW OPERATIONS

The same operations we perform on a system of linear equations we can also perform on an augmented matrix. These operations are called **elementary row operations**.

ELEMENTARY ROW OPERATIONS (CONCLUDED)

System of Equations	Matrix
Multiply an equation by a nonzero constant	Multiply a row by a nonzero constant
2. Interchange two equations	2. Interchange two rows
3. Add a multiple of one equation to another	3. Add a multiple of one row to another row

A USE FOR ROW OPERATIONS

Elementary row operations can be used to solve systems of equations.