Section 5.2

Diagonalization

TWO PROBLEMS

- The Diagonalization Problem: Given an n×n matrix A, does there exist an invertible matrix P such that P⁻¹AP is a diagonal matrix?
- The Eigenvector Problem: Given an *n* matrix *A*, does *A* have *n* linear independent eigenvectors?

SIMILAR MATRICES

If A and B are square matrices, then we say that \underline{B} is similar to \underline{A} if there is an invertible matrix P such that $B = P^{-1}AP$.

DIAGONALIZABLE MATRICES

A square matrix A is called <u>diagonalizable</u> if there is an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix; the matrix P is said to <u>diagonalize</u> A.

TWO EQUIVALENT STATEMENTS

Theorem 5.2.1: If *A* is an $n \times n$ matrix, then the following are equivalent.

- (a) A is diagonalizable.
- (b) A has n linearly independent eigenvectors.

PROCEDURE TO DIAGONALIZE A MATRIX

Step 1: Confirm that the matrix is actually diagonalizable by finding *n* linearly independent eigenvectors. One way to do this is by finding a basis for each eigenspace and merging these basis vectors into a single set *S*. If this set has fewer than *n* vectors, then the matrix is not diagonalizable.

Step 2: Form the matrix $P = [\mathbf{p}_1 \ \mathbf{p}_2 \ \dots \ \mathbf{p}_n]$ that has the vectors in S as it column vectors.

Step 3: The matrix $P^{-1}AP$ will then be diagonal and have the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ corresponding to the eigenvectors $\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n$ as its successive entries.

THEOREM

<u>Theorem 5.2.2</u>: If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are eigenvectors for A corresponding to *distinct* eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a linearly independent set.

THEOREM

<u>Theorem 5.2.3</u>: If an $n \times n$ matrix A has n distinct eigenvectors, then A is diagonalizable.

GEOMETRIC AND ALGEBRAIC MULTIPLICITY

- If λ₀ is an eigenvalue of an n×n matrix A, then
 the dimension of the eigenspace corresponding
 to λ₀ is called the geometric multiplicity of λ₀.
- The number of times that $\lambda \lambda_0$ appears as a factor in the characteristic polynomial of *A* is called the **algebraic multiplicity** of *A*.

THEOREM 5.2.5 GEOMETRIC AND ALGEBRAIC MULTIPLICITY

Theorem 5.2.5: If *A* is a square matrix, then:

- (a) For every eigenvalue of *A*, the geometric multiplicity is less than or equal to the algebraic multiplicity.
- (b) *A* is diagonalizable if and only if the geometric multiplicity of every eigenvalue is equal to the algebraic multiplicity.