STUDY GUIDE FOR FINAL EXAM

MATH 2201

1. Use Gauss-Jordan elimination to solve (by hand) the following systems of linear equations.

$$x - y - z = 0$$

$$2x_1 + 2x_2 - 2x_3 = 4$$

(a)
$$2x + y + z = 3$$

$$3x - z = 0$$

(b)
$$3x_1 + 5x_2 + x_3 = -8$$

$$-4x_1 - 7x_2 - 2x_3 = 13$$

2. Use determinants to decide if the following homogeneous linear systems have a nontrivial solution. Do the computations by hand.

$$x - 4y + z = 0$$

$$x_1 + 7x_2 + x_3 = 0$$

(a)
$$2x - 3y + 7z = 0$$

$$x-2y = 0$$

(b)
$$2x_1 + 14x_2 + 5x_3 = 0$$

$$3x_1 + 21x_2 + 5x_3 = 0$$

- 3. Let $\mathbf{v} = (7, -1, 2, 3)$ and $\mathbf{w} = (-2, 2, -4, 5)$. Find the vector \mathbf{x} that satisfies $3(2\mathbf{x} + 7\mathbf{v}) = -2(3\mathbf{w} 5\mathbf{x})$.
- 4. Determine whether the following are matrix operators by using Theorem 4.10.2 which says: A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation if and only if the following relationships hold for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n and for every scalar k.

(i)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

(ii)
$$T(k\mathbf{u}) = kT(\mathbf{u})$$

(a)
$$T(x, y) = (2x + y, x - y)$$

(b)
$$T(x, y) = (x + 1, y)$$

(c)
$$T(x, y) = (y, y)$$

(d)
$$T(x, y) = \sqrt{x}, \sqrt[3]{y}$$

5. The standard matrix [T] of a matrix transform T is given. Use it to find $T(\mathbf{x})$.

(a)
$$[T] = \begin{bmatrix} 1 & 6 \\ 1 & 7 \end{bmatrix}$$
; $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

(b)
$$[T] = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 6 & 8 \end{bmatrix}$$
; $\mathbf{x} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

(c)
$$[T] = \begin{bmatrix} 2 & -1 \\ -1 & 1 \\ 3 & -2 \end{bmatrix}$$
; $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

(d)
$$[T] = \begin{bmatrix} 1 & 5 & 9 \\ 6 & 1 & -1 \\ 0 & 2 & 5 \end{bmatrix}$$
; $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

6. Determine if the following sets W are subspaces of the indicated vector space V.

(a)
$$W = \{(a, b, c) \mid c = a - 2b\}; V = R^3$$

(b)
$$W = \{(a, b, c) \mid a^2 + b^2 = c^2\}; V = R^3$$

(c)
$$W = \{a_0 + a_1x + a_2x^2 / a_0, a_1, \text{ and } a_2 \text{ are integers}\}; V = P_2$$

7. Determine if the following sets of vectors in \mathbb{R}^3 are linearly independent or linearly dependent.

(a)
$$\left\{ (3, 6, -12), \left(-\frac{2}{5}, -\frac{4}{5}, \frac{8}{5} \right) \right\}$$

(b)
$$\{(1, -4, 2), (2, 0, 1), (3, 2, 2)\}$$

(c)
$$\{(1, 1, 1), (1, 1, 0), (1, 0, 0), (1, 0, 1)\}$$

8. Determine if the following sets of vectors in \mathbb{R}^4 are linearly independent or linearly dependent.

(a)
$$\{(1, 2, 4, -3), (1, 1, 0, 1), (2, 1, 1, 3)\}$$

(b)
$$\{(3, 2, 2, 2), (12, 5, 2, 2), (6, 2, 5, 2), (3, 2, 2, 5)\}$$

(c)
$$\{(1, a, 0, 0), (0, 1, a, 0), (0, 0, 1, a), (0, 0, 0, 1)\}$$

9. Find the dimension of the subspace spanned by the given vectors.

(a)
$$\{(1, 3, 2), (1, -5, 5), (3, 1, 9)\}$$

(b)
$$\{(-1, 2, 2, 3), (2, 1, 1, 5), (7, -4, -4, 1)\}$$

(c)
$$\{(1, 0, 2, -1), (3, 3, 0, 1), (0, -3, 6, -4), (1, 3, -4, 3)\}$$

(d)
$$\{(1, 1, -1, 2), (1, -1, 1, 1), (3, -5, 5, 2), (6, 2, -3, 8), (8, 2, -4, 9)\}$$

- 10. Find the distance between the given vecotrs in the given inner product space.
 - (a) $\mathbf{u} = (1, 3, -1), \mathbf{v} = (2, 0, 4)$. Use the Euclidean inner product on \mathbb{R}^3
 - (b) $\mathbf{u} = (1, -3), \ \mathbf{v} = (5, 1).$ Use the inner product $\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 5u_2v_2$.
 - (c) $\mathbf{p} = 1 + x^2$, $\mathbf{q} = 1 x^2$. Use the inner product on P_2 given by $\langle \mathbf{p}, \mathbf{q} \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$.
- 11. Use the inner products given in Question 10 to determine if the following pairs of vectors are orthogonal.
 - (a) $\mathbf{u} = (1, 4, -5), \mathbf{v} = (2, 3, 2)$
 - (b) $\mathbf{u} = (2, 3), \mathbf{v} = (10, -4)$
 - (c) $\mathbf{p} = 1 x^2$, $\mathbf{q} = 3 + 12x 4x^2$
- 12. For each of the following matrices, find:
 - (i) the characteristic equation of the matrix A
 - (ii) the eigenvalues of the matrix A
 - (iii) a basis for each eigenspace of the matrix A.

(a)
$$A = \begin{bmatrix} 4 & -12 \\ -6 & 3 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 19 & -9 & -6 \\ 25 & -11 & -9 \\ 17 & -9 & -4 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} 0 & -1 & 1 & -1 \\ 0 & 1 & 0 & 0 \\ -2 & -2 & 3 & -1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

13. For the matrices given in Question 12, determine if A is diagonalizable. If it is, find the matrix P that diagonalizes A, and determine $P^{-1}AP$.

ANSWERS

1. (a)
$$x = 1, y = -2, z = 3$$

(b)
$$x_1 = 9 + 3t$$
, $x_2 = -7 - 2t$, $x_3 = t$

- 2. (a) $det = -15 \neq 0$. The system has only the trivial solution.
 - (b) det = 0. The system has a nontrivial solution.

3.
$$\mathbf{x} = \left(\frac{135}{4}, -\frac{9}{4}, \frac{9}{2}, \frac{93}{4}\right)$$

- 4. (a) matrix transform
 - (c) matrix transform
- 5. (a) $\begin{bmatrix} 13 \\ 15 \end{bmatrix}$
 - (c) $\begin{bmatrix} 2x_1 x_2 \\ -x_1 + x_2 \\ 3x_1 2x_2 \end{bmatrix}$
- 6. (a) subspace
 - (c) not a subspace
- 7. (a) linearly dependent
 - (c) linearly dependent
- 8. (a) linearly independent
 - (c) linearly independent
- 9. (a) two dimensional
 - (c) two dimensional
- 10. (a) $\sqrt{35}$
 - (c) 2
- 11. (a) not orthogonal
 - (c) not orthogonal

- (b) not a matrix transform
- (d) not a matrix transform

$$\begin{array}{c} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \end{array}$$

(d)
$$\begin{bmatrix} x_1 + 5x_2 + 9x_3 \\ 6x_1 + x_2 - x_3 \\ 2x_2 + 5x_3 \end{bmatrix}$$

- (b) not a subspace
- (b) linearly independent
- (b) linearly independent
- (b) two dimensional
- (d) three dimensional
- (b) $8\sqrt{2}$
- (b) orthogonal

- 12. (a) $\lambda^2 7\lambda 60$; $\lambda = 12, -5$. For $\lambda = 12, \{(-3, 2)\}$. For $\lambda = -5, \{(4, 3)\}$.
 - (b) $(\lambda 2)(\lambda 1)^2$; $\lambda = 1, 1, 2$. For $\lambda = 1, 4, \frac{4}{3}, 1$. For $\lambda = 2, 4, \frac{3}{4}, 1$.
 - (c) $(\lambda 1)^2 (\lambda 2)^2$; $\lambda = 1, 1, 2, 2$. For $\lambda = 1, \{(1, -1, 0, 0), (1, 0, 1, 0)\}$. For $\lambda = 2$ $\{(1, 0, 2, 0), (-1, 0, 0, 2)\}$.
- 13. (a) $P = \begin{bmatrix} -3 & 4 \\ 2 & 3 \end{bmatrix}$; $P^{-1}AP = \begin{bmatrix} 12 & 0 \\ 0 & -5 \end{bmatrix}$
 - (b) Not diagonalizable.

(c)
$$P = \begin{bmatrix} 1 & 1 & 1 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
; $P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$