Section 5.1

Eigenvalues and Eigenvectors

EIGENVALUES AND EIGENVECTORS

If A is an $n \times n$ matrix, then a nonzero vector **x** in \mathbb{R}^n is called an <u>eigenvector</u> of A (or of the matrix operator T_A) if $A\mathbf{x}$ is a scalar multiple of **x**; that is,

$$A\mathbf{x} = \lambda \mathbf{x}$$

for some scalar λ . The scalar λ is called an <u>eigenvalue</u> of A (or of T_A), and \mathbf{x} is said to be the <u>eigenvector corresponding to λ </u>.

CHARACTERISTIC EQUATION AND CHARACTERISTIC POLYNOMIAL

Theorem 5.1.1: If *A* is an $n \times n$ matrix, then λ is an eigenvalue of *A* if and only if it satisfies the equation

$$\det(\lambda I - A) = 0.$$

This is called the <u>characteristic equation</u>. After the determinant is expanded, it is a polynomial in λ which is called the <u>characteristic polynomial</u>.

EIGENVALUES OF TRIANGULAR MATRICES

Theorem 5.1.2: If A is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal), then the eigenvalues of A are the entries on the main diagonal of A.

EQUIVALENT STATEMENTS

Theorem 5.1.3: If *A* is an $n \times n$ matrix and λ is a real number, then the following are equivalent.

- (a) λ is an eigenvalue of A.
- (b) The system of equations $(\lambda I A)\mathbf{x} = \mathbf{0}$ has nontrivial solutions.
- (c) There is an nonzero vector \mathbf{x} in \mathbb{R}^n such that $A\mathbf{x} = \lambda \mathbf{x}$.
- (d) λ is a solution of the characteristic equation $\det(\lambda I A) = 0$.

EIGENSPACES

The eigenvectors corresponding the λ are the nonzero vectors in the solution space of $(\lambda I - A)\mathbf{x} = \mathbf{0}$. We call this null space the **eigenspace** of *A* corresponding to λ .

POWERS OF A MATRIX

Theorem 5.1.4: If k is a positive integer, λ is an eigenvalue of a matrix A, and \mathbf{x} is a corresponding eigenvector, then λ^k is an eigenvalue of A^k and \mathbf{x} is a corresponding eigenvector.

EIGENVALUES AND INVERTIBILITY

Theorem 5.1.5: A square matrix *A* is invertible if and only $\lambda = 0$ is **not** an eigenvalue of A.

THE "BIG" THEOREM

Theorem 4.10.4: If A is an $n \times n$ matrix, then the following are equivalent.

- (a) A is invertible
- (b) Ax = 0 has only the trivial solution.
- (c) The reduced row-echelon form of A is I_n .
- (d) A is expressible as a product of elementary matrices.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
- (g) $det(A) \neq 0$
- The column vectors of A are linearly independent.
- (i) The row vectors of A are linearly independent.

THE "BIG" THEOREM (CONCLUDED) (j) The column vectors of $A \operatorname{span} R^n$.

- The row vectors of A span R^n .
- The column vectors of A form a basis for R^n .
- The row vectors of A form a basis for R^n .
- (n) A has rank n.
- (o) A has nullity 0.
- The orthogonal complement of the null space of A is \mathbb{R}^n .
- The orthogonal complement of the row space of A is [0].
- The range of T_A is R^n .
- T_A is one-to-one.
- $\Lambda = 0$ is not an eigenvalue of A.