Section 4.4

Coordinates and Basis

BASIS

If *V* is any vector space and $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a finite set of vectors in *V*, then *S* is called a **basis** for *V* if the following two conditions hold:

- (a) S is linearly independent.
- (b) S spans V.

UNIQUENESS OF A BASIS REPRESENTATION

Theorem 4.4.1: If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then every vector \mathbf{v} in V can be expressed in the form

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$$

in exactly one way.

COORDINATES RELATIVE TO A BASIS

If $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ is a basis for a vector space V, and if

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$$

is the expression for \mathbf{v} in terms of the basis S, then the scalars c_1, c_2, \ldots, c_n are the <u>coordinates</u> of \mathbf{v} relative to S. The vector (c_1, c_2, \ldots, c_n) in \mathbb{R}^n constructed from these coordinates is called the <u>coordinate vector</u> of \mathbf{v} relative to S; it is denoted by

$$(\mathbf{v})_S = (c_1, c_2, \dots, c_n).$$