Section 7.1

Orthogonal Matrices

ORTHOGONAL MATRICES

A square matrix *A* is said to be <u>orthogonal</u> if its transpose is the same as its inverse; that is,

$$A^{-1} = A^T$$

or, equivalently, if

$$A^TA = AA^T = I$$
.

THEOREM

Theorem 7.1.1: The following are equivalent for an n n matrix A.

- (a) A is orthogonal.
- (b) The row vectors of A form an orthonormal set in \mathbb{R}^n with the Euclidean inner product.
- (c) The column vectors of A form an orthonormal set in \mathbb{R}^n with the Euclidean inner product.

PROPERTIES OF ORTHOGONAL MATRICES

Theorem 7.1.2:

- (a) The inverse of an orthogonal matrix is orthogonal.
- (b) A product of orthogonal matrices is orthogonal.
- (c) If A is orthogonal, then det(A) = 1 or det(A) = -1.

ORTHOGONAL MATRICES AS LINEAR OPERATORS

Theorem 7.1.3: If A is an n n matrix, the following are equivalent.

- (a) A is orthogonal
- (b) $||A\mathbf{x}|| = ||\mathbf{x}||$ for all \mathbf{x} in \mathbb{R}^n .
- (c) $A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for all \mathbf{x} and \mathbf{y} in \mathbb{R}^n .

THEOREM

<u>Theorem 7.1.4</u>: If S is an orthonormal basis for an n-dimensional inner product space V, and if

$$(\mathbf{u})_S = (u_1, u_2, \dots, u_n)$$
 and $(\mathbf{v})_S = (v_1, v_2, \dots, v_n)$

then:

(a)
$$\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$

(b)
$$d(\mathbf{u}, \mathbf{v}) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$

(c)
$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

ORTHOGONAL LINEAR OPERATORS

If $T: \mathbb{R}^n \to \mathbb{R}^n$ is multiplication by an orthogonal matrix A, then T is called an <u>orthogonal linear</u> <u>operator</u>.

<u>Note</u>: It follows from parts (a) and (b) of the preceding theorem that orthogonal linear operators are those operators that leave the length of vectors unchanged.

CHANGE OF ORTHONORMAL BASIS

Theorem 7.1.5: Let V be a finite-dimensional inner product space. If P is the transition matrix from one orthonormal basis to another orthonormal basis for an inner product space, then P is an orthogonal matrix; that is,

$$P^{-1} = P^T$$