Section 6.1

Inner Products

INNER PRODUCT SPACES

An <u>inner product</u> on a real vector space V is a function that associates a real number $\langle \mathbf{u}, \mathbf{v} \rangle$ with each pair of vectors \mathbf{u} and \mathbf{v} in V in such a way that the following axioms are satisfied for all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and all scalars k.

(a) $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$ [Symmetry Axiom]

(b) $\langle \mathbf{u} + \mathbf{v}, \mathbf{z} \rangle = \langle \mathbf{u}, \mathbf{z} \rangle + \langle \mathbf{v}, \mathbf{z} \rangle \quad [Additivity Axiom]$

(c) $\langle k\mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle$ [Homogeneity Axiom]

(d) $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$ [Positivity Axiom] and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$

if and only if $\mathbf{v} = \mathbf{0}$

A real vector space with an inner product is called a <u>real inner</u> <u>product space</u>.

NORM AND DISTANCE

If *V* is an inner product space, then the <u>norm</u> (or <u>length</u>) of a vector **u** in *V* is denoted by $||\mathbf{u}||$ and is defined by

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

The <u>distance</u> between two vectors (points) **u** and **v** is denoted by $d(\mathbf{u}, \mathbf{v})$ and is defined by

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle}$$

WEIGHTED EUCLIDEAN INNER PRODUCT

If w_1, w_2, \ldots, w_n are positive real numbers, called <u>weights</u>, and if $\mathbf{u} = (u_1, u_2, \ldots, u_n)$ and $\mathbf{v} = (v_1, v_2, \ldots, v_n)$ are vectors in \mathbb{R}^n , then it can be shown that the formula

$$\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \dots + w_n u_n v_n$$

defines an inner product on R^n ; it is called the weighted Euclidean inner product with weights $\underline{w_1}, \underline{w_2}, \dots, \underline{w_n}$.

PROPERTIES OF NORM AND DISTANCE

Theorem 6.1.1: If \mathbf{u} and \mathbf{v} are vectors in a real inner product space V, and if k is

- (a) $||\mathbf{v}|| \ge 0$ with equality if and only if $\mathbf{v} = \mathbf{0}$.
- (b) $||k\mathbf{v}|| = |k/||\mathbf{v}||$.
- (c) $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$.
- (d) $d(\mathbf{u}, \mathbf{v}) \ge 0$ with equality if and only if $\mathbf{v} = \mathbf{0}$.

THE UNIT SPHERE

The set of all points (vectors) in V that satisfy $\|\mathbf{u}\| = 1$ is called the <u>unit sphere</u> (or sometimes the <u>unit circle</u>) in V. In R^2 and R^3 these are points that lie 1 unit, in terms of the inner product, away from the origin. If you are using a different inner product than the dot product (*e.g.*, the weighted Euclidean inner product), the "unit circle" may not be a circle!

PROPERTIES OF INNER PRODUCTS

<u>Theorem 6.1.2</u>: If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in a real inner product space, and k is any scalar, then

- (a) $\langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{0} \rangle = 0$
- (b) $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$
- (c) $\langle \mathbf{u}, \mathbf{v} \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle \langle \mathbf{u}, \mathbf{w} \rangle$
- (d) $\langle \mathbf{u} \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle \langle \mathbf{v}, \mathbf{w} \rangle$
- (e) $k\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, k\mathbf{v} \rangle$