Section 2.2

Evaluating Determinants by Row Reduction

A THEOREM

<u>Theorem 2.2.1</u>: Let *A* be a square matrix. If *A* has a row or column of all zeros, then det(A) = 0.

TRANSPOSES AND THE DETERMINANT

<u>Theorem 2.2.2</u>: Let *A* be a square matrix. Then $det(A) = det(A^T)$.

<u>NOTE</u>: As a result of this theorem, nearly every theorem about the determinants that contains the word <u>row</u> in its statement is also true when the word <u>column</u> is substituted for <u>row</u>.

ROW OPERATIONS AND DETERMINANTS

Theorem 2.2.3: Let *A* be and $n \times n$ matrix.

- (a) If B is the matrix that results when a single row or single column of A is multiplied by any scalar k, then det(B) = k det(A).
- (b) If B is the matrix that results when two rows or two columns of A are interchanged, then det(B) = -det(A).
- (c) If B is the matrix that results when a multiple of one row of A is added to another row or when a multiple of one column is added to another column, then det(B) = det(A).

ELEMENTARY MATRICES AND DETERMINANTS

Theorem 2.2.4: Let *E* be an $n \times n$ elementary matrix.

- (a) If *E* results from multiplying a row of I_n by k, then det(E) = k.
- (b) If E results from interchanging two rows of I_n , then det(E) = -1.
- (c) If E results from adding a multiple of one row of I_n to another, then det(E) = 1.

DETERMINANTS AND PROPORTIONAL ROWS/COLUMNS

Theorem 2.2.5: If *A* is a square matrix with two proportional rows or two proportional columns, then det(A) = 0.