Section 3.5

Cross Product

THE CROSS PRODUCT

If $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ are vectors in 3-space, then the **cross product** or $\mathbf{u} \times \mathbf{v}$ is defined by

$$\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1)$$

or in determinant notation,

$$\mathbf{u} \times \mathbf{v} = \left(\begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \right)$$

DETERMINANT FORM OF THE CROSS PRODUCT

If $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$, then

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$
$$= \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}$$

RELATIONSHIPS INVOLVING CROSS PRODUCT AND DOT PRODUCT

Theorem 3.5.1: If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in 3-space, then

(a)
$$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$
 $(\mathbf{u} \times \mathbf{v} \text{ is orthogonal to } \mathbf{u})$

(b)
$$\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$
 ($\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{v})

(c)
$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$$
 (Lagrange's identity)

(d)
$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$$

(e)
$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{v} \cdot \mathbf{w}) \mathbf{u}$$

PROPERTIES OF THE CROSS PRODUCT

Theorem 3.5.2: If \mathbf{u} , \mathbf{v} , and \mathbf{w} are any vectors in 3-space and k is any scalar, then

(a)
$$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$

(b)
$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$$

(c)
$$(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$$

(d)
$$k(\mathbf{u} \times \mathbf{w}) = (k\mathbf{u}) \times \mathbf{w} = \mathbf{u} \times (k\mathbf{w})$$

(e)
$$\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$$

(f)
$$\mathbf{u} \times \mathbf{u} = \mathbf{0}$$

STANDARD UNIT VECTORS

Recall the <u>standard unit vectors</u> in 3-space are the vectors

$$\mathbf{i} = (1, 0, 0), \quad \mathbf{j} = (0, 1, 0), \quad \mathbf{k} = (0, 0, 1).$$

Each of these vectors have length 1 unit and lie on the coordinate axes.

COMMENTS ON STANDARD UNIT VECTORS

1. Every vector in 3-space can be expressed in terms of the standard unit vectors:

$$\mathbf{v} = (v_1, v_2, v_3) = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$$

2.
$$\mathbf{i} \times \mathbf{i} = \mathbf{0}$$
 $\mathbf{j} \times \mathbf{j} = \mathbf{0}$ $\mathbf{k} \times \mathbf{k} = \mathbf{0}$

$$\mathbf{j} \times \mathbf{j} = \mathbf{0}$$

$$\mathbf{k} \times \mathbf{k} = \mathbf{0}$$

$$\mathbf{i} \times \mathbf{i} = \mathbf{k}$$

$$\mathbf{i} \times \mathbf{j} = \mathbf{k}$$
 $\mathbf{j} \times \mathbf{k} = \mathbf{i}$ $\mathbf{k} \times \mathbf{i} = \mathbf{j}$

$$\mathbf{k} \times \mathbf{i} = \mathbf{i}$$

$$\mathbf{j} \times \mathbf{i} = -\mathbf{k}$$

$$\mathbf{j} \times \mathbf{i} = -\mathbf{k} \quad \mathbf{k} \times \mathbf{j} = -\mathbf{i} \quad \mathbf{i} \times \mathbf{k} = -\mathbf{j}$$

AREA OF A PARALLELOGRAM

Theorem 3.5.3: If **u** and **v** are vectors in 3space, then $\|\mathbf{u} \times \mathbf{v}\|$ is equal to the area of the parallelogram determined by \mathbf{u} and \mathbf{v} .

THE SCALAR TRIPLE PRODUCT

If **u**, **v** and **w** are vectors in 3-space, then the scalar triple product of u, v, and w is defined by

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}).$$

COMMENTS ON THE TRIPLE SCALAR PRODUCT

1. If $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$ and $\mathbf{w} = (w_1, w_2, w_3)$, the triple scalar product can be calculated by the formula

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

2.
$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u})$$

GEOMETRIC INTERPRETATION **OF DETERMINANTS**

Theorem 3.5.4: Part (a)

The area of the parallelogram in 2-space determined by the vectors $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$ is given by

$$\det\begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix}$$

GEO. INTERPRETATION OF DET. (CONCLUDED)

Theorem 3.5.4: Part (b)

The volume of the parallelepiped in 3-space determined by the vectors $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, and $\mathbf{w} = (w_1, w_2, w_3)$ is given by

$$|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| = \begin{vmatrix} \det \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} \end{vmatrix}$$

VECTORS IN THE SAME PLANE

Theorem 3.5.5: If the vectors $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, and $\mathbf{w} = (w_1, w_2, w_3)$ have the same initial point, then they lie in the same plane if and only if

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = 0$$