Section 4.2

Subspaces

SUBSPACES

A subset *W* of a vector space *V* is called a **subspace** of *V* if *W* is itself a vector space under the addition and scalar multiplication defined on *V*

DETERMINING IF W IS A SUBSPACE

Theorem 4.2.1: If W is a set of one or more vectors from a vector space V, then W is a subspace of V if and only if the following conditions hold.

- (a) If \mathbf{u} and \mathbf{v} are vectors in W, then $\mathbf{u} + \mathbf{v}$ is in W.
- (b) If k is any scalar and \mathbf{u} is any vector in W, then $k\mathbf{u}$ is in W.

Remarks:

- If condition (a) holds, W is said to be **closed under addition**.
- If condition (b) holds, W is said to be <u>closed under scalar</u> <u>multiplication</u>.
- Thus, W is a subspace if and only if W is closed under addition and closed under scalar multiplication.

INTERSECTION OF SUBSPACES

Theorem 4.2.2: If W_1, W_2, \ldots, W_r are subspaces of a vector spaces V, then the intersection of these subspaces is also a subspace of V.

LINEAR COMBINATIONS

A vector **w** is a <u>linear combination</u> of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ if it can be expressed in the form

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \ldots + k_r \mathbf{v}_r$$

where k_1, k_2, \ldots, k_r are scalars.

SMALLEST SUBSPACE CONTAINING VECTORS

Theorem 4.2.3: If $S = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_r\}$ are vectors in a vector space V, then:

- (a) The set *W* of all linear combinations of the vectors in *S* is a subspace of *V*.
- (b) The set *W* in part (a) is the smallest subspace of *V* that contains all of the vectors in *S* in the sense that every other subspace of *V* that contains those vectors must contain *W*.

SPAN

The subspace of a vector space V that is formed from all possible linear combinations of the vectors in a nonempty set S is called the <u>span of</u> S, and we say that the vectors in S <u>span</u> that subspace. If $S = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_r\}$, then we denote the span of S by

$$\operatorname{span}\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_r\}$$
 or $\operatorname{span}(S)$

SOLUTION SPACES OF HOMOGENEOUS SYSTEMS

<u>Theorem 4.2.4</u>: The solution of a homogeneous linear system $A\mathbf{x} = \mathbf{0}$ in n unknowns is a subspace of R^n .

A THEOREM

Theorem 4.2.5: If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ and $S' = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$ are nonempty sets of vectors in a vector space V, then

$$\operatorname{span} \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\} = \operatorname{span} \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$$

if and only if each vector in *S* is a linear combination of those in *S'*, and each vector in *S'* is a linear combination of those in *S*.