Section 4.8

Rank and Nullity

ROW SPACE AND COLUMN SPACE HAVE EQUAL DIMENSION

Theorem 4.8.1: The row space and column space of a matrix *A* have the same dimension.

RANK AND NULLITY

The common dimension of the row space and column space of a matrix A is called the <u>rank</u> of A and is denoted by rank(A). The dimension of the null space of A is called the <u>nullity</u> of A and is denoted by nullity(A).

DIMENSION THEOREM FOR MATRICES

Theorem 4.8.2: If A is any matrix with n columns, then

rank(A) + nullity(A) = n.

THEOREM

Theorem 4.8.3: If A is an $m \times n$ matrix, then:

- (a) rank(A) = the number of leading variables in the solution of <math>Ax = 0.
- (b) nullity(A) = the number of parameters in the general solution of $A\mathbf{x} = \mathbf{0}$.

MINIMUM VALUE FOR RANK

If A is an $m \times n$ matrix, then the row vectors lie in \mathbb{R}^n and the column vectors in \mathbb{R}^m . This means the row space is at most n-dimensional and the column space is at most m-dimensional. Thus,

 $rank(A) \le min(m, n)$.

THE "BIG" THEOREM

Theorem 4.8.4: If *A* is an $n \times n$ matrix, then the following are equivalent.

- (a) A is invertible
- (b) Ax = 0 has only the trivial solution.
- (c) The reduced row-echelon form of A is I_n .
- (d) A is expressible as a product of elementary matrices.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
- (g) $det(A) \neq 0$
- (h) The column vectors of A are linearly independent.

THE "BIG" THEOREM (CONCLUDED)

- (i) The row vectors of A are linearly independent.
- (j) The column vectors of A span \mathbb{R}^n .
- (k) The row vectors of A span \mathbb{R}^n .
- (1) The column vectors of A form a basis for \mathbb{R}^n .
- (m) The row vectors of A form a basis for \mathbb{R}^n .
- (n) A has rank n.
- (o) A has nullity 0.

OVERDETERMINED AND UNDERDETERMINED SYSTEMS

- Systems with more constraints than unknowns are called <u>overdetermined</u> systems.
- Systems with fewer constraints than unknowns are called <u>underdetermined</u> systems.

PARAMETERS AND RANK

Theorem 4.8.5: If $A\mathbf{x} = \mathbf{b}$ is a consistent linear systems of m equations in n unknowns, and if A has rank r, then the general solution of the system contains n - r parameters.

A THEOREM

Theorem 4.8.5: Let *A* be an $n \times n$ matrix.

- (a) (*Overdetermined Case*). If m > n, then the linear system $A\mathbf{x} = \mathbf{b}$ is inconsistent for at least one vector \mathbf{b} in \mathbb{R}^n .
- (b) (*Underdetermined Case*). If m < n, then for each vector \mathbf{b} in R^n the linear system $A\mathbf{x} = \mathbf{b}$ is either inconsistent or has infinitely many solutions.

FOUR FUNDAMENTAL MATRIX SPACES

If we consider matrices A and A^T together, then there are six vector spaces of interest:

 $\begin{array}{ll} \text{row space } A & \text{row space } A^T \\ \text{column space } A & \text{column space } A^T \\ \text{null space } A & \text{null space } A^T. \end{array}$

Since transposing converts row vectors to column vectors and vice versa, we really only have four vector spaces of interest:

row space A column space A nullspace A^T

These are known as the <u>fundamental matrix spaces</u> associated with A.

RANK OF A MATRIX AND ITS TRANSPOSE

Theorem 4.8.7: If *A* is any matrix, then $rank(A) = rank(A^T)$.

SOME RELATIONSHIPS

Let A be an $m \times n$ matrix.

$$rank(A) + nullity(A^T) = m$$

$$\dim[\operatorname{row}(A)] = r$$

 $\dim[\operatorname{col}(A)] = r$

$$\dim[\operatorname{null}(A)] = n - r$$

 $\dim[\operatorname{null}(A^T)] = m - r$

ORTHOGONAL COMPLEMENTS

If W is a subspace of R^n , then the set of all vectors in R^n that are orthogonal to every vector in W is called the <u>orthogonal complement</u> of W and is denoted by the symbol W^{\perp} .

A THEOREM

Theorem 4.8.8: If W is a subspace of \mathbb{R}^n , then:

- (a) W^{\perp} is a subspace of \mathbb{R}^n .
- (b) The only vector common to W and W^{\perp} is **0**.
- (c) The orthogonal complement of W^{\perp} is W.

A THEOREM

Theorem 4.8.9: If A is an $m \times n$ matrix, then:

- (a) The null space of A and the row space of A are orthogonal complements in \mathbb{R}^n .
- (b) The null space of A^T and the column space of A are orthogonal complements in R^n .

THE "BIG" THEOREM

Theorem 4.8.10: If *A* is an $n \times n$ matrix, then the following are equivalent.

- (a) A is invertible
- (b) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (c) The reduced row-echelon form of A is I_n .
- (d) A is expressible as a product of elementary matrices.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
- (g) $det(A) \neq 0$
- (h) The column vectors of A are linearly independent.

THE "BIG" THEOREM (CONCLUDED)

- (i) The row vectors of A are linearly independent.
- (j) The column vectors of A span \mathbb{R}^n .
- (k) The row vectors of A span \mathbb{R}^n .
- (l) The column vectors of A form a basis for \mathbb{R}^n .
- (m) The row vectors of A form a basis for \mathbb{R}^n .
- (n) A has rank n.
- (o) A has nullity 0.
- (p) The orthogonal complement of the null space of A is \mathbb{R}^n .
- (q) The orthogonal complement of the row space of A is [0].