Section 2.3

Properties of Determinants; Cramer's Rule

det(kA)

Let *A* be an $n \times n$ matrix. Then $\det(kA) = k^n \det(A)$

A THEOREM

Theorem 2.3.1: Let A, B, and C be $n \times n$ matrices that differ only in a single row, say the r^{th} , and assume that the r^{th} row of C can be obtained by adding corresponding entries in the r^{th} rows of A and B. Then

$$\det(C) = \det(A) + \det(B)$$

The same result holds for columns.

A LEMMA

<u>Lemma 2.3.2</u>: If *B* is an $n \times n$ matrix and *E* is an $n \times n$ elementary matrix, then

$$det(EB) = det(E) det(B)$$

This lemma generalizes as follows:

$$\det(E_1 E_2 \cdots E_r B) = \det(E_1) \det(E_2) \cdots \det(E_r) \det(B)$$

INVERTIBILITY AND DETERMINANTS

Theorem 2.3.3: A square matrix *A* is invertible if and only if $det(A) \neq 0$.

MATRIX MULTIPLICATION AND DETERMINANTS

Theorem 2.3.4: If *A* and *B* are square matrices of the same size, then

$$det(AB) = det(A) det(B)$$

DETERMINANT OF THE INVERSE

Theorem 2.3.5: If *A* is invertible, then

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

ADJOINT OF A MATRIX

If *A* is any $n \times n$ matrix and C_{ij} is the cofactor of a_{ij} , then the matrix

$$\begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}$$

is called the <u>matrix of cofactors from A</u>. The transpose of this matrix is called the <u>adjoint of A</u> and is denoted by adj(A).

INVERSE OF A MATRIX USING ITS ADJOINT

Theorem 2.3.6: If A is an invertible matrix, then

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$

CRAMER'S RULE

Theorem 2.3.7: Cramer's Rule

If $A\mathbf{x} = \mathbf{b}$ is a system of linear equations in n unknown such that $\det(A) \neq 0$, then the system has a unique solution. This solution is

$$x_1 = \frac{\det(A_1)}{\det(A)}, \ x_2 = \frac{\det(A_2)}{\det(A)}, \ \cdots, \ x_n = \frac{\det(A_n)}{\det(A)}$$

where A_j is the matrix obtained by replacing the entries in the j^{th} column of A by the entries in the matrix \mathbf{b} .

EQUIVALENT STATEMENTS

Theorem 2.3.8: If A is an $n \times n$ matrix, then the following statements are equivalent; that is, all are true or all are false.

- (a) A is invertible.
- (b) Ax = 0 has only the trivial solution.
- (c) The reduced row-echelon form of A is In.
- (d) A is expressible as a product of elementary matrices.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
- (g) $det(A) \neq 0$