Section 7.2

Orthogonal Diagonalization

ORTHOGONALLY DIAGONALIZABLE MATRICES

If *A* and *B* are square matrices, then we say that *A* and *B* are <u>orthogonally similar</u> if there is an orthogonal matrix *P* such that $P^{T}AP = B$.

If A is orthogonally similar to some diagonal matrix, say

$$P^{T}AP = D$$

then we say that *A* is <u>orthogonally diagonalizable</u> and that *P* <u>orthogonally diagonalizes</u> *A*.

CONDITIONS FOR ORTHOGONAL DIAGONALIZABILITY

Theorem 7.2.1: If *A* is an $n \times n$ matrix, then the following are equivalent.

- (a) A is orthogonally diagonalizable.
- (b) A has an orthonormal set of n eigenvectors.
- (c) A is symmetric.

SYMMETRIC MATRICES

Theorem 7.2.2: If *A* is a symmetric matrix, then:

- (a) The eigenvalues of *A* are real numbers.
- (b) Eigenvectors from different eigenspaces are orthogonal.

DIAGONALIZATION OF SYMMETRIC MATRICES

Step 1: Find a basis for each eigenspace of *A*.

<u>Step 2</u>: Apply the Gram-Schmidt process to each of these bases to obtain an orthonormal basis for each eigenspace.

Step 3: Form the matrix P whose columns are the basis vectors constructed in Step 2. This matrix will orthogonally diagonalize A, and the eigenvectors on the diagonal of $D = P^T A P$ will be in the same order as their corresponding eigenvectors in P.