Section 3.3

Orthogonality

ORTHOGONAL VECTORS

Two nonzero vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are said to be **orthogonal** (or **perpendicular**) if $\mathbf{u} \cdot \mathbf{v} = 0$. We will also agree that the zero vector in \mathbb{R}^n is orthogonal to *every* vector in \mathbb{R}^n . A nonempty set of vectors in \mathbb{R}^n is called an **orthogonal set** if all pairs of distinct vectors in the set are orthogonal. An orthogonal set of unit vectors is called an **orthonormal set**.

VECTORS, LINES, AND PLANES

Theorem 3.3.1:

(a) If a and b are constants that are not both zero, then an equation of the form

$$ax + by + c = 0$$

represents a line in R^2 with normal $\mathbf{n} = (a, b)$.

(b) If a, b, and c are constants that are not all zero, then an equation of the form

$$ax + by + cz + d = 0$$

represents a plane in \mathbb{R}^3 with normal $\mathbf{n} = (a, b, c)$.

THE PROJECTION THEOREM

Theorem 3.3.2 Projection Theorem:

If **u** and **a** are vectors in \mathbb{R}^n , and if $\mathbf{a} \neq \mathbf{0}$, then **u** can be expressed in exactly one way in the form $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$, where \mathbf{w}_1 is a scalar multiple of **a** and \mathbf{w}_2 is orthogonal to **a**.

ORTHOGONAL PROJECTION

The vectors \mathbf{w}_1 and \mathbf{w}_2 from the Prejection Theorem have associated names. The vector \mathbf{w}_1 is called the orthogonal projection of \mathbf{u} on \mathbf{a} or sometimes the vector component of \mathbf{u} along \mathbf{a} . It is denoted by

$$\text{proj}_{\mathbf{a}} \mathbf{u}$$
.

The vector \mathbf{w}_2 is called the <u>vector component of u</u> <u>orthogonal to a</u> and can be written as

$$\mathbf{w}_2 = \mathbf{u} - \operatorname{proj}_{\mathbf{a}} \mathbf{u}$$
.

SUMMARY OF PROJECTIONS

$$\operatorname{proj}_{\mathbf{a}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}$$
 [vector component of u along a]

$$\mathbf{u} - \text{proj}_{\mathbf{a}} \mathbf{u} = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}$$
 [vector component of \mathbf{u} orthogonal to \mathbf{a}]

NORM OF THE ORTHOGONAL PROJECTION OF u ALONG a

$$\|\mathsf{proj}_{\mathbf{a}}\,\mathbf{u}\| = \frac{|\mathbf{u}\cdot\mathbf{a}|}{\|\mathbf{a}\|}$$

and

$$\|\operatorname{proj}_{\mathbf{a}}\mathbf{u}\| = \|\mathbf{u}\|\cos\theta$$

where θ is the angle between \mathbf{u} and \mathbf{a}

PYTHAGOREAN THEOREM IN Rⁿ

Theorem 3.3.3: If \mathbf{u} and \mathbf{v} are *orthogonal* vectors in \mathbb{R}^n with the Euclidean inner product, then

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

DISTANCE BETWEEN A POINTS AND LINES AND PLANES

Theorem 3.3.4:

(a) In R^2 , the distance D between the point $P(x_0, y_0)$ and the line ax + by + c = 0 is

$$D = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

(b) In R^2 , the distance D between the point $P(x_0, y_0, z_0)$ and the plane ax + by + cz + d = 0

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$