Section 6.3
A Planarity Algorithm

PIECES OF A GRAPH

• If $G_1 = (V_1, E_1)$ is a subgraph of $G = (V, E)$, then a piece of G relative to G_1 is either an edge $e = uv$ where $e \in E_1$ and $u, v \in V(G_1)$ or a connected component of $(G - G_1)$ plus any edges incident to vertices of this component.

• For any piece P relative to G_1, the vertices of P in G_1 are called contact vertices.

• If a piece has two or more contact vertices, it is called a segment.

• Two segments are incompatible if when placed in the same region of the plane determined by a cycle C, at least two of their edges cross. Note that when embedded C divides the plane into two regions, one interior to C, the other exterior.

PRELIMINARY TEST TO SIMPLIFY FINDING A PLANAR EMBEDDING

1. If $|E| > 3p - 6$, then the graph must be nonplanar.

2. If the graph is disconnected, consider each component separately.

3. If the graph contains a cut vertex, then it is clearly planar if and only if each of the blocks is planar. Thus, we can limit our attention to 2-connected graphs.

4. Loops and multiple edges change nothing; hence, we need only consider graphs.

5. A vertex of degree 2 can certainly be replaced by an edge joining its neighbors. This contraction of all vertices of degree 2 constructs a homeomorphic graph with the smallest number of vertices. Certainly, a graph is planar if and only if the contraction is planar.
G-ADMISSIBLE

Let \hat{H} be a plane embedding of a subgraph H of G. If there exists a plane embedding of G (say \hat{G}) such that $\hat{H} \subseteq \hat{G}$, then \hat{H} is said to be G-admissible.

SEGMENTS AND SUBGRAPHS

- Let S be any segment of G relative to a subgraph H. S can be drawn in region r of \hat{H} provided all the contact vertices of S lie in the boundary of r.
- We can extend the embedding of \hat{H} to include at least part of S.

STRATEGY OF THE DEMOUCRON, MALGRANGE, AND PERTUISET ALG.

- Find a sequence of subgraphs $\hat{H}_1, \hat{H}_2, ..., \hat{H}_{|E|-p+2} = G$ such that $H_i \subset H_{i+1}$ and such that \hat{H}_i is G-admissible (if possible).
- We either construct a plane embedding of G (if one is possible) or discover some segment S which cannot be compatibly embedded in any region.
SOME NOTATION

Given a plane embedded subgraph \(\tilde{H}_i \), for each segment \(S \), the set \(R(S, \tilde{H}_i) \) is defined to be the set regions in which \(S \) can be compatibly embedded in \(\tilde{H}_i \).

DMP PLANARITY ALGORITHM

Algorithm 6.3.1 DMP Planarity Algorithm

Input: A preprocessed block (after applying tests 1-5).

Output: The fact that the graph is planar or nonplanar.

Method: Look for a sequence of admissible embeddings beginning with some cycle \(C \).

DMP ALGORITHM (CONCLUDED)

1. Find a cycle \(C \) and a planar embedding of \(C \) as the first subgraph \(\tilde{H}_1 \).
 Set \(i \leftarrow 1 \) and \(r \leftarrow 2 \).
2. If \(r = \lvert E \rvert - p + 2 \), then stop;
 else determine all segments \(S \) of \(\tilde{H}_i \) in \(G \) and for each segment \(S \) determine \(R(S, \tilde{H}_i) \).
3. If there exists a segment \(S \) with \(R(S, \tilde{H}_i) = \emptyset \),
 then stop and say \(G \) is nonplanar;
 else if there exists a segment \(S \) such that \(\lvert R(S, \tilde{H}_i) \rvert = 1 \),
 then let \(R = R(S, \tilde{H}_i) \);
 else let \(S \) be any segment and \(R \) be any region in \(R(S, \tilde{H}_i) \).
4. Choose a path \(P \) in \(S \) connecting two contact vertices. Set \(H_{i+1} = H_i \cup P \) to obtain the embedding \(\tilde{H}_{i+1} \) with \(P \) placed in \(R \).
5. Set \(i \leftarrow i + 1 \), \(r \leftarrow r + 1 \) and go to step 2.