Section 4.6
Connectivity and Networks

TWO SIMILAR RESULTS

Menger’s Theorem relates the maximum number of disjoint paths and the minimum number of vertices in a separating set. The Max Flow-Min Cut Theorem relates the maximum flow and the minimum capacity of a cut. Both involve the equality of two quantities, one of which is a maximum and the other a minimum. The Max Flow-Min Cut Theorem can be used to prove Menger’s Theorem.

MENGER’S THEOREM

Theorem 4.6.1 (Menger’s Theorem): For distinct nonadjacent vertices \(u \) and \(w \) in a graph \(G \), the maximum number of pairwise internally disjoint \(u – w \) paths equals the minimum number of vertices in a \(u – w \) separating set.
EDGES VERSION OF MENGER’S THEOREM

Theorem 4.6.2: In a graph G, the maximum number of edge disjoint $u - v$ paths equals the number of edges in a $u - v$ separating set.