Section 4.3

The Dinic Algorithm and Layered Networks

Layered Networks

A layered network is a network in which the vertices have been layered. The layers and their structure are determined by the present flow. Forward arcs $e = u \rightarrow v$ such that $f(e) < c(e)$ and backward arcs $e = v \rightarrow u$ such that $f(e) > 0$ are called useful arcs. We denote the useful arcs from layer L_i to layer L_{i+1} by U_{i+1}. We build layers on a breadth-first search using only useful arcs. As arcs become saturated, we have fewer and fewer useful arcs in relayering the network.

Layering Algorithm

Algorithm 4.3.1 The Layering Algorithm

Input: A network N and flow f.

Output: A sequence of layers of vertices L_0, L_1, \ldots, L_d or the message that the present flow is maximum.

Method: A modified BFS using only useful arcs.
LAYERING ALGORITHM (CONCLUDED)

1. \(L_0 \leftarrow \{s\} \) and \(i \leftarrow 0 \).
2. Set \(T \leftarrow \{v \mid v \not\in \bigcup_{j=0}^{i} L_j \text{ and there is } e = u \to v \text{ or } v \to u \text{ such that } e \text{ is useful}\} \).
3. If \(T = \emptyset \), say the present flow is maximum and halt.
4. If \(t \in T \), then \(k \leftarrow i + 1 \) and \(L_k \leftarrow \{t\} \) and halt with the layers \(L_0, L_1, ..., L_k \); else \(L_{i+k} \leftarrow T \), set \(i \leftarrow i + 1 \) and go to step 2.

COMMENTS ON LAYERING

- Consecutive layers are joined only by useful arcs.
- We seek a maximal flow \(f^* \) in the layered network.
- This means that a flow \(f^* \) such that for every path \(s = v_0, e_1, v_1, ..., e_d, v_d = t \), where \(v_i \in L_i \) and \(e_i \in U_{i+1} \), there is at least one saturated arc \(e \).
- That is, every feasible augmenting path with vertices in consecutive layers has an arc whose flow is at capacity.

PHASES

The process of finding a layered network, then finding the maximal flow on the layered network and improving the original flow is called a phase. We can bound the number of phases needed in order to find a maximal flow.
LENGTH OF A LAYERED NETWORK

- The **length** of a layered network is the index of the final layer.
- This is also a measure of the length of an augmenting path.
- We denote the length of a layered network obtained in the \(j \)th phase by \(\text{len}(j) \).
- We denote the \(a \)th layer in the \(b \)th phase by \(L_{ab}(b) \).

A BOUND ON THE NUMBER OF PHASES

Theorem 4.3.1: If phase \(m + 1 \) is not the final phase, then \(\text{len}(m + 1) > \text{len}(m) \), and hence, the number of phases is at most \(|V| - 1 \).

STACKS

- A **stack** is a last in-first out information storage and retrieval device. (Think of a stack of trays in a cafeteria.)
- The act of placing \(X \) on the top of the stack \(ST \) will be denoted by \(ST <= X \).
- The act of removing \(X \) from the top of the stack \(ST \) will be denoted by \(X <= ST \).
- These are the only two operations allowed on the stack.
DINIC’S MAXIMAL FLOW ALGORITHM

Algorithm 4.3.2 Dinic’s Maximal Flow Algorithm.

Input: A layered network \(N \) with \(f(e) = 0 \) and \(e \) marked unblocked.

Output: A maximal flow on \(N \).

DINIC’S ALGORITHM (CONCLUDED)

1. Let \(v \leftarrow s \) and empty the stack \(ST \).
2. If all arcs to the next layer are blocked, then
 if \(s = v \), then halt and note that the present flow is maximal.
 else \(e \leftarrow ST \) (say \(e = uv \)), mark \(e \) as “blocked,” \(v \leftarrow u \),
 and repeat step 2.
3. Choose an unblocked arc \(e = vu \) with \(u \) in the next layer,
 \(ST \leftarrow e \) and let \(v \leftarrow u \). If \(v \) does not equal \(t \),
 then go to step 2.
4. The edges on \(ST \) form an augmenting path \(P \). Find the
 minimum slack \(\Delta \) on \(P \). For every arc \(e \) on \(P \), set \(f(e) \leftarrow f(e) + \Delta \)
 and if \(f(e) = c(e) \), mark \(e \) as “blocked.” Go to step 1.