Section 4.2

The Ford and Fulkerson Approach

AUGMENTING PATH

One approach to finding the maximum flow in a network, is to start with some "path" between the source and sink and improve the flow along the path. Once this is done, we repeat the process on N with its modified flow. We continue until we cannot find a path whose flow can be approved. This is known as the augmenting path technique.

CUTS AND CAPACITY

- Let S be a subset set of V such that $s \in S$ and $t \in \overline{S} = V - S$.
- $out(S) = \{e = u \rightarrow v \in E: u \in S \text{ and } v \in \overline{S}\};$ that is, the set of all arcs from S to \overline{S}.
- $in(S) = \{e = v \rightarrow u \in E: u \in S \text{ and } v \in \overline{S}\};$ that is, the set of all arcs from \overline{S} to S.
- $out(S) \cup in(S)$ is called the cut determined by S.
- For a set S of vertices, we call $c(S) = \sum_{e \in out(S)} c(e)$ the capacity of the cut determined by S.
SOME PREPARATORY RESULTS

Lemma 4.2.1: Given a network $N = (V, E, s, t, c)$ with flow f, then for every $S \subseteq V$ such that $s \in S$ and $t \in \overline{S}$,

$$F = \sum_{e \in \text{out}(S)} f(e) - \sum_{e \in \text{in}(S)} f(e).$$

Proposition 4.2.1: Given a network N, for every flow f with total flow F and for every $S \subseteq V$,

$$F \leq c(S).$$

Corollary 4.2.1: Given a network N with flow f and $S \subseteq V$ such that S contains s but not t, if $F = c(S)$, then F is a maximum and the cut determined by S is of minimum capacity.

SLACK AND SATURATION

- If the arc $e = x \rightarrow y$ is on an $s \rightarrow t$ path and we wish use e to push more flow to t, then e presently must not be up to capacity; that is $f(e) < c(e)$. The amount of improvement is limited to $\Delta(e) = c(e) - f(e)$ called the **slack** of e.
- If $f(e) = c(e)$, we say the arc e is **saturated**.
- If the arc $e = y \rightarrow x$, then in order to increase the flow from s to t, we must cancel some of the flow into x on this arc (since the flow is away from t). Thus, there must already be some flow ($f(e) > 0$) on e if we are to increase the total flow.

AUGMENTING PATH

An **augmenting path** is a (not necessarily directed) path from s to t that can be used to increase the flow from s to t.
FORWARD AND BACKWARD LABELING

- In the augmenting path technique, we label vertices.
- A forward labeling of vertex \(v \) using arc \(e = u \rightarrow v \) is done when \(u \) is labeled and \(v \) is not labeled and \(c(e) > f(e) \). The label \(e^+ \) is assigned to \(v \). Here \(\Delta(e) = c(e) - f(e) \).
- A backward labeling of vertex \(v \) using arc \(e = v \rightarrow u \) is done when \(u \) is labeled and \(v \) is not labeled and \(f(e) > 0 \). The label \(e^- \) is assigned to \(v \). Here \(\Delta(e) = f(e) \).

AUGMENTING PATHS AND MAXIMUM FLOW

Theorem 4.2.1: In a network \(N \) with flow \(f \), the total flow \(F \) is maximum if and only if no augmenting path from \(s \) to \(t \) exists.

THE FORD AND FULKERSON ALGORITHM

Algorithm 4.2.1 The Ford and Fulkerson Algorithm.

Input: A network \(N = (V, E, s, t, c) \) and a flow \(f \).
(Initially, we usually choose \(f(e) = 0 \) for every arc \(e \).)

Output: A modified flow \(f^* \) or the answer that the present flow is maximum.

Method: Augmenting paths.
FORD AND FULKERSON ALG.
(CONCLUDED)
1. Label s with $*$ and leave all other vertices unlabeled.
2. Find an augmenting path P from s to t.
3. If none exists,
 then halt, noting that the present flow is maximum;
 else compute and record the slack of each arc of P
 and compute the minimum slack λ. Now, redefine
 the flow f by adding λ to f for all forward arcs of P
 and subtracting λ from f for all backward arcs of P.
4. Set $f^* = f$ and repeat this process for N and the new
 flow f^*.

EDMONDS AND KARP TECHNIQUE

Edmonds and Karp were able to show that if a
breadth-first search is used in the labeling
algorithm and the shortest augmenting path
is always selected, then the algorithm will
terminate in at most $O(|V|^2 |E|)$ steps even if
irrational capacities are allowed.

SCAN

We will use the term scan to imply that a
breadth-first search is being done.
FINDING AN AUGMENTING PATH ALGORITHM

Algorithm 4.2.2 Finding an Augmenting Path.
Input: A network N and a flow f.
Output: An augmenting path P or a message the none exists.
Method: A modified breadth-first search.

FINDING AN AUGMENTING PATH (CONCLUDED)

1. Label s with \ast.
2. If all labeled vertices have been scanned, then halt, noting that no augmenting path exists; hence the present flow is maximum, else find a labeled but unscanned vertex v and scan as follows:
 For each $e = vu \in \text{out}(b)$, if $c(e) - f(e) > 0$ and u is unlabeled, label u with e^\ast. For each $e = uv \in \text{in}(v)$, if $f(e) > 0$ and u is unlabeled, then label u with e^\ast.
3. If t has been labeled, then starting at t, use the labels to backtrack to s along an augmenting path. The label at each vertex indicates its predecessor in the path. When you reach s output the path and halt; else repeat step 2.

THE MAX FLOW-MIN CUT THEOREM

Theorem 4.2.2 (The Max Flow-Min Cut Theorem): In a network N, the maximum value of a flow equals the minimum capacity of a cut.