Section 2.2

Connectivity

IDEA OF DEPTH-FIRST SEARCH

• Select vertex \(v_0 \) and visit any vertex adjacent to \(v_0 \), say \(v_1 \).
• Next visit a vertex adjacent to \(v_1 \) that has not been visited.
• Continue until a vertex \(v_k \) is reached with the property that all of its neighbors have been visited.
• Backtrack to the last vertex visited prior to \(v_k \), say \(v_{k-1} \) and visit any new vertices neighboring it. If none exist, backtrack until we find a vertex with unreached neighbors.
• When we backtrack to \(v_0 \) and find it has no unvisited neighbors, we have visited all possible vertices reachable from \(v_0 \).

PROPERTIES OF DFS

• The set of edges formed are the edges of a tree.
• If the graph still has vertices that are unvisited, we can choose one of the vertices and start the DFS again. (If this happens, the graph is disconnected.)
• When all vertices have been visited, the edges used in performing these visit are the edges of a forest.
DFS PARTITIONS EDGES

- The DFS algorithm partitions the edge set into two sets T (those edges contained in the forest) called tree edges. The remaining edges $B = E - T$ are called back edges.
- The set B can be partitioned further when applying DFS to a digraph:
 - B_1 is the set of back arcs that join two vertices y and x where $e = y \rightarrow x$ along some path from v_y to x in the DFS tree that begins with v_y.
 - F is the set of forward arcs that join two vertices x and y where $e = x \rightarrow y$ along some path from v_x to y in the DFS tree that begins with v_x.
 - C is the set of arcs in B that join two vertices joined by a unique tree path that contains v_x. The edges of C are called cross edges, since they are edges between vertices that are not descendants of one another in the DFS tree.

NUMBERING VERTICES IN DFS

While performing a DFS, we shall number the vertices v with an integer $n(v)$ which represents the order in which the vertices are first encountered during the search.

DEPTH-FIRST SEARCH ALGORITHM

Algorithm 2.2.1 Depth-First Search (DFS).

Input: A graph $G = (V,E)$ with distinguished vertex x.

Output: A set T of tree edges and an ordering $n(v)$ of the vertices.

Method: Use a label $m(v)$ to determine if an edge has been examined. Use $p(v)$ to record the previous vertex to v in a search.
DFS (CONCLUDED)

1. For each \(e \in E \), do the following: Set \(m(e) \leftarrow \) "unused."
 Set \(T \leftarrow \emptyset \), \(i \leftarrow 0. \)
 For every \(v \in V \), do the following: Set \(n(v) \leftarrow 0. \)
2. Let \(v \leftarrow x. \)
3. Let \(i \leftarrow i + 1 \) and let \(n(v) \leftarrow i. \)
4. If \(v \) has no unused incident edges, then go to step 6.
5. Find an unused edge \(e = uv \) and set \(m(e) \leftarrow \) "used." Set \(T \leftarrow T \cup \{ e \}. \)
 If \(n(u) \neq 0 \), then go to step 4;
 else \(p(u) \leftarrow v, v \leftarrow u \) and go to step 3
6. If \(n(v) = 1 \), then halt; else \(v \leftarrow p(v) \) and go to step 4.

RECURSIVE VERSION OF DFS

Algorithm 2.2.2 Recursive Version of Depth-First Search.

Input: A graph \(G = (V, E) \) with starting vertex \(x. \)

Output: A set \(T \) of tree edges and an ordering \(n(v) \) of the vertices.

1. Let \(i \leftarrow 1 \) and let \(T \leftarrow \emptyset. \) For all \(v \in V \), do the following:
 Set \(n(v) \leftarrow 0. \)
2. While for some \(u \in V, \ n(v) = 0, \) do the following:
 DFS\((u)\).
3. Output \(T. \)

PROCEDURE DFS

Procedure DFS\((v)\)

1. Let \(n(v) \leftarrow i \) and \(i \leftarrow i + 1. \)
2. For all \(y \in N(v), \) do the following:
 if \(n(y) = 0, \) then \(T \leftarrow T \cup \{ e = yv \} \)
 DFS\((y)\)
 end DFS
CONNECTIVITY

• The connectivity of G, denoted by $k(G)$, is the minimum number of vertices whose removal disconnects G or reduces it to a single vertex K_1.
• The edge connectivity of G, denoted by $k_1(G)$, is the minimum number of edges whose removal disconnects G.
• The graph G is n-connected if $k(G) \geq n$ and is n-edge connected if $k_1(G) \geq n$.

SEPARATING SETS

• A set of vertices whose removal increases the number of components in a graph is called a vertex separating set (or vertex cut set). If the cut set consists of a single vertex, it is a called cut vertex.
• A set of edges whose removal increases the number of components in a graph is called a edge separating set (or edge cut set). If the cut set consists of a single edge, it is a called cut edge or a bridge.

BLOCKS

A block of a graph G is a maximal 2-connected subgraph; that is, a 2-connected subgraph H of G that is not a proper subgraph of any other 2-connected subgraph of G.
A THEOREM ON CUT VERTICES AND BRIDGES

Theorem 2.2.1: In a connected graph G:
1. A vertex v is a cut vertex if and only if there exists vertices u and w ($u, w \neq v$) such that v is on every $u - w$ path of G.
2. A edge e is a bridge if and only if there exists vertices u and w such that e is on every $u - w$ path of G.

A RELATIONSHIP BETWEEN CONNECTIVITY AND EDGE CONNECTIVITY

Theorem 2.2.2: For any graph G, $k(G) \leq k_1(G) \leq \delta(G)$.

A CHARACTERIZATION OF BRIDGES

Theorem 2.2.3: In a graph G, the edge e is a bridge if and only if e lies on no cycle of G.
INTERNALLY DISJOINT PATHS

Two $u - v$ paths P_1 and P_2 are internally disjoint if

$$V(P_1) \cap V(P_2) = \{u, v\}.$$

A CHARACTERIZATION OF 2-CONNECTED GRAPHS

Theorem 2.2.4 (Whitney): A graph G of order $p \geq 3$ is 2-connected if and only if any two vertices of G lie on a common cycle.

MENGER’S THEOREM

Theorem 2.2.5 (Menger’s Theorem): For nonadjacent vertices u and v in a graph G, the maximum number of internally disjoint $u - v$ paths equals the minimum number of vertices that separate u and $v.$
A GENERALIZATION OF WHITNEY’S THEOREM

Theorem 2.2.6: A graph is k-connected if and only if all distinct pairs of vertices are joined by at least k internally disjoint paths.

AN EDGE ANALOG TO MENGGER’S THEOREM

Theorem 2.2.7: For any two vertices u and v of a graph G, the maximum number of edge disjoint paths joining u and v equals the minimum number of edges whose removal separates u and v.