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Section 11.1:  Sequences

Introduction:
· A sequence  is a function whose domain is the set of positive integers.
· The functions values   are called the terms of the sequence.
· The value of function at the integer  is .
· The variable  is called the index.

A sequence may be specified in three ways:
· By an explicit formula
	
· By a recursive formula
	
· By giving enough terms to establish a pattern
	6, 18, 54, 162, . . .



Graphing a Sequence on the TI-83/84:
	1.	Press MODE. Select Seq at the end of the fourth line.
	2.	Press Y= and type the sequence.  Use the X,T,θ,n key to get the variable “n.”
	3.	Adjust the viewing window as necessary.


Example:  Graph the sequence  .


The Limit of a Sequence:

	Consider the sequence .

	

[image: ]



	It appears that

 

NOTE:  All the limit theorems for functions (learned in Calculus I) also apply to sequences.



Definition:  If    is finite, then the sequence  converges; if  is infinite or does not exist, then the sequence  diverges.

	Observe the if  is a positive number, then


Examples:  Show the following sequences converge.

1.	


















2.	

Theorem:  Let  be a sequence and let  f  be a function defined on  such that  for  n.
If  , then    .


However, it is NOT necessarily true that if , then .  For example:
	If , then  does not exist.  See the graph below.

[image: ]
The graph of y = sin πx

If  , then .  This is because  is a succession of zeros for
 .  See the graph below.
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The graph of  (in red)
with   (in blue) superimposed.


Example:  Does  converge?

Some Convergence Theorems:

The Squeeze Theorem:  Suppose the  and  both converge to L and that  for  (K is a fixed positive integer).  Then  converges to L.

Example:  Use the Squeeze Theorem to show that  converges.










The Squeeze Theorem can be used to prove the Absolute Value Theorem stated below.

Absolute Value Theorem:  If  , then  .

Example:  Show that if , then the sequence  converges.

Solution:
	If ,  .  So, we only need to deal with cases when  and ; that is, when .
	Since , .  Thus, there is some positive number  such that .
	Now, we recall the Binomial Formula which says

Note that:  .

Using the Binomial Formula, we see that

Hence, we know that

and that

Thus, by the Squeeze Theorem,  .  And, by the Absolute Value Theorem, .


Monotonic Sequences:
· A sequence  is called nondecreasing if  .
· A sequence  is called nonincreasing if .
· A sequence is called monotonic if it is either nondecreasing or nonincreasing.

Two examples of nondecreasing sequences are


A nondecreasing sequence can do one of two things:
	1.	March off to infinity, or
	2.	If it is bounded above (that is,  for  and some fixed number K), then it must bump against a “lid.”  See the figure below.
[bookmark: _GoBack][image: ]
A nondecreasing sequence that
is bounded above by 2.

NOTE:  Sequence   above marches off to infinity.  However, sequence  above is bounded above by 1 and has limit 1.

Bounded Sequences:
1.	A sequence  is bounded above if there is a real number M such that  for all .  The number M is called an upper bound of the sequence.
2.	A sequence  is bounded below if there is a real number N such that  for all .  The number N is called a lower bound of the sequence.
3.	A sequence  is bounded if it is bounded above and bounded below.


Monotonic Sequence Theorem: Every bounded, monotonic sequence is convergent.

NOTE:  In the theorem above it is not necessary that the sequence  be monotonic initially, only that they be monotonic from some point on—that is, for .  In fact, the convergence or divergence of a sequence does not depend on the character of its initial terms but rather on what is true for large n.


Example:  Use the Monotonic Sequence Theorem to show that

converges.
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