Linear Functions \& Relations
Slope-intercept form
Standard form
Point-slope form

$$
\begin{gathered}
\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{mx}+\mathrm{b} \\
\mathrm{Ax}+\mathrm{By}=\mathrm{C} \\
\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right) \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{gathered}
$$

Slope formula:

Compound Interest Formulas:
Continuous Compounding

$$
\begin{aligned}
& A=P e^{r t} \\
& A P Y=e^{r}-1
\end{aligned}
$$

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n \cdot t} \\
& A P Y=\left(1+\frac{r}{n}\right)^{n}-1
\end{aligned}
$$

$\mathrm{A}=$ accumulated amount, $\mathrm{P}=$ Principle, $\mathrm{r}=$ annual interest rate, $\mathrm{t}=$ number of years, $\mathrm{n}=$ frequency of compounding per year.

Savings Plan: $A=P M T \frac{\left[\left(1+\frac{A P R}{n}\right)^{n \cdot Y}-1\right]}{\left(\frac{A P R}{n}\right)} \quad P M T=\frac{A \times\left(\frac{A P R}{n}\right)}{\left(1+\frac{A P R}{n}\right)^{n \cdot Y}-1}$
$\mathrm{A}=$ accumulated amount, $\mathrm{PMT}=$ regular payment, $\mathrm{APR}=$ annual percentage rate, $\mathrm{n}=$ number of annual payments, $\mathrm{Y}=$ number of years

$$
\text { Total return }=\frac{(A-P)}{P} \times 100 \% \quad \text { Annual return }=\left(\frac{A}{P}\right)^{1 / Y}-1
$$

Properties for Logarithms

4. $\log _{a} M=\frac{\log M}{\log a}=\frac{\ln M}{\ln a}$
2. $\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N$
3. $\log _{a} M^{p}=p \cdot \log _{a} M$ \square

Do your best!
Rise to the challenge!

