- 1. Binomial conditions have to be valid.
- 2. $n\bar{p} \ge 5$ and
- 3. $n(1-\bar{P}) \ge 5$
- 4. Then the CLT says that the sampling distribution for $ar{p}$ will be bell shaped with

In hypothesis testing: Your claim (what you are trying to prove) must be worded in H_A , Because you control the level of confidence of the test.

One Tailed Test: Left Tail	One Tailed test: Right Tail	Two Tailed Test.
$H_o: P =$	$H_o: P =$	$H_0: P =$
$H_A: P <$	$H_A: P >$	$H_A: P \neq$
Rent Ho I-x -Fc	1-x Report Ho	Reject the I-a Reject the -Te Be

Procedure:

- 1. Make a sketch.
- 2. Find z_c = Z critical from the given level of confidence.
- 3. Use the CLT to Compute $z_{test} = \frac{\bar{p} p}{\sqrt{\frac{p(1-p)}{n}}}$
- 4. State your conclusion
- 5. Compute the P-value.

Your conclusion has to be one of two: Either:

1. There is sufficient evidence to Reject H_o which means support H_A

Or

2. There is Insufficient evidence to Reject H_o . This means fail to reject H_o , which means fail to support H_A .

The P-value = The probability of getting a sample as extreme as the one you have in the given problem.

 α = Level of Significance, 1 - α = level of Confidence

If the P-value $\leq \alpha$: Reject H_o which means support H_A

If the P-Value > α : Fail to Reject H_o which means Fail to support H_A

TI 84: Stat----- Tests ----- 1-Proportion Z Test.

Type I and Type II Errors

		True State of Nature	
		The null hypothesis is true	The null hypothesis is faise
Decision	We decide to reject the null hypothesis	Type I error (rejecting a true null hypothesis) $P(type I error) = \alpha$	Correct decision
W	We fail to reject the null hypothesis	Correct decision	Type II error (failing to reject a false null hypothesis) $P(type II error) = \beta$

Copyright & 2010, 2007, 2004 Pearson Education, Inc.

Hypothesis Testing for μ

σ is known

- 1. n > 30 or the population distribution is bell shaped to start with.
- 2. Then the CLT says that the sampling for \bar{x} will be bell shaped with

$$\mu(\bar{x}) = \mu$$
 and $\sigma(\bar{x}) = \frac{\sigma}{\sqrt{n}}$
 $H_o = Null Hypothesis$
 $H_A = Alternative Hypothesis$

In hypothesis testing: Your claim (what you are trying to prove) must be worded in H_A , Because you control the level of confidence of the test.

 $\sigma(x) = \frac{\sigma}{\sqrt{n}}$

One Tailed Test: Left Tail	One Tailed test: Right Tail	Two Tailed Test.
$H_o: \mu =$	$H_o: \mu =$	$H_o: \mu =$
$H_A: \mu < $	$H_A: \mu >$	$H_A: \mu \neq$
Reget the 1-x -Ze o	1-x Reject Ho,	Rejectileo Rejectileo

Procedure:

19 g. 39

- 1. Make a sketch.
- 2. Find z_c = Z critical from the given level of confidence.

3. Use the CLT to Compute
$$Z_{test} = \frac{\overline{x-\mu}}{\frac{\sigma}{\sqrt{n}}}$$

- 4. State your conclusion
- 5. Compute the P-value.

Your conclusion has to be one of two: Either:

1. There is sufficient evidence to Reject H_o which means support H_A

Or

e e e e

2. There is Insufficient evidence to Reject H_o . This means fail to reject H_o , which means fail to support H_A .

The P-value = The probability of getting a sample as extreme as the one you have in the given problem.

 α = Level of Significance, 1 - α = level of Confidence

If the P-value $\leq \alpha$: Reject H_o which means support H_A

If the P-Value > α : Fail to Reject H_o which means Fail to support H_A

TI 84: Stat----- Tests ----- Z- Test.

Type I and Type II Errors True State of Nature The null hypothesis The null hypothesis is faise Type I error

We decide to reject.
the null hypothesisType I error
(rejecting a true null
hypothesis)
 $P(type I error) = \alpha$ Correct decisionWe fail to reject the
null hypothesisCorrect decisionType II error
(failing to reject a
false null hypothesis)
 $P(type II error) = \beta$

Organization 2010, 2007, 2004 Pears on Education, Inc.

σ is not known

- 1. n > 30 or the population distribution is bell shaped to start with.
- 2. Then the CLT says that the sampling for \bar{x} will be bell shaped with

$$\mu(\bar{x}) = \mu$$

$$H_o = Null Hypothesis$$

$$H_A = Alternative Hypothesis$$
Since \mathcal{T} is not known,
We use the student
 $t - Distribution$

In hypothesis testing: Your claim (what you are trying to prove) must be worded in H_A , Because you control the level of confidence of the test.

One Tailed Test: Left Tail	One Tailed test: Right Tail	Two Tailed Test.
$H_o: \mu =$	$H_o: \mu =$	$H_o: \mu =$
$H_A: \mu <$	$H_A: \mu >$	$H_A: \mu \neq$
Repet Ho I-ok	I-a Repet Ho	Reject Ho Reject Ho Reject Ho Reject Ho Reject Ho Reject Ho

Procedure:

* * * * *

- 1. Make a sketch.
- 2. Degrees of Freedom = d.f. = n-1
- 3. Find t_c = t critical from the given level of confidence.
- 4. Use the CLT to Compute $t_{test} = \frac{\overline{x} \mu}{\frac{s}{\sqrt{\pi}}}$
- 5. State your conclusion
- 6. Compute the P-value.

Your conclusion has to be one of two: Either:

1. There is sufficient evidence to Reject H_o which means support H_A

Or

11 1 mg

2. There is Insufficient evidence to Reject H_o . This means fail to reject H_o , which means fail to support H_A .

The P-value = The probability of getting a sample as extreme as the one you have in the given problem.

 α = Level of Significance, 1 - α = level of Confidence

If the P-value $\leq \alpha$: Reject H_o which means support H_A

If the P-Value > : Fail to Reject H_o which means Fail to support H_A

TI 84: Stat----- Tests ----- T- Test.

Type I and Type II Errors

		True State of Nature	
封幕社		The null hypothesis is true	The null hypothesis is false
Decision	We decide to reject the null hypothesis	Type I error (rejecting a true null hypothesis) $P(type I error) = \alpha$	Correct decision
	We fail to reject the null hypothesis	Correct decision	Type II error (failing to reject a false null hypothesis) $P(type II error) = \beta$

Seption © 2010, 2007-2004 Pearson Education, Inc.