1. Binomial conditions have to be valid.
2. $n \bar{p} \geq 5$ and
3. $\mathrm{n}(1-\bar{P}) \geq 5$
4. Then the CLT says that the sampling distribution for \bar{p} will be bell shaped with

$$
\begin{aligned}
& \quad \mu(\bar{P})=P \text { and } \sigma(\bar{p})=\sqrt{\frac{P(1-P)}{n}} \\
& H_{o}=\text { Null Hypothesis } \\
& H_{A}=\text { Alternative Hypothesis }
\end{aligned}
$$

In hypothesis testing: Your claim (what you are trying to prove) must be worded in H_{A}, Because you control the level of confidence of the test.

One Tailed Test: Left Tail	One Tailed test: Right Tail	Two Tailed Test.
$\begin{array}{ll} H_{o}: & P= \\ H_{A}: & P< \end{array}$	$\begin{array}{ll} H_{o}: & P= \\ H_{A}: & P> \end{array}$	

Procedure:

1. Make a sketch.
2. Find $z_{c}=Z$ critical from the given level of confidence.
3. Use the CLT to Compute $z_{\text {test }}=\frac{\bar{p}-p}{\sqrt{\frac{p(1-p)}{n}}}$
4. State your conclusion
5. Compute the P -value.

Your conclusion has to be one of two:

Either:

1. There is sufficient evidence to Reject H_{o} which means support H_{A}

Or
2. There is Insufficient evidence to Reject H_{o}. This means fail to reject H_{0}, which means fail to support H_{A}.

The P-value = The probability of getting a sample as extreme as the one you have in the given problem.
$\alpha=$ Level of Significance, 1- $\alpha=$ level of Confidence
If the P-value $\leq \alpha \quad$: Reject H_{o} which means support H_{A}
If the P -Value $>\alpha$: Fail to Reject H_{o} which means Fail to support H_{A}

TI 84: Stat----- Tests ----- 1-Proportion Z Test.

Type I and Type II Errors

Hypothesis Testing for μ
σ is known

1. $\mathrm{n}>30$ or the population distribution is bell shaped to start with.
2. Then the CLT says that the sampling for \bar{x} will be bell shaped with

$$
\mu(\bar{x})=\mu \text { and } \sigma(\bar{x})=\frac{\sigma}{\sqrt{n}}
$$

$H_{o}=$ Null Hypothesis
$H_{A}=$ Alternative Hypothesis

In hypothesis testing: Your claim (what you are trying to prove) must be worded in H_{A}, Because you control the level of confidence of the test.

One Tailed Test: Left Tail	One Tailed test: Right Tail	Two Tailed Test.
$\begin{aligned} & H_{0}: \quad \mu= \\ & H_{A}: \quad \mu< \\ & \text { Rget Ho } \\ & \frac{-z_{c}}{1-\alpha}: \end{aligned}$	$H_{o}: \quad \mu=$ $H_{A}: \quad \mu>$	

Procedure:

1. Make a sketch.
2. Find $z_{c}=Z$ critical from the given level of confidence.
3. Use the CLT to Compute $z_{\text {test }}=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}$
4. State your conclusion
5. Compute the P-value.

Your conclusion has to be one of two:
Either:

1. There is sufficient evidence to Reject H_{o} which means support H_{A} Or
2. There is Insufficient evidence to Reject H_{o}. This means fail to reject H_{o}, which means fail to support H_{A}.

The P -value $=$ The probability of getting a sample as extreme as the one you have in the given problem.
$\alpha=$ Level of Significance, 1- $\alpha=$ level of Confidence
If the P-value $\leq \alpha \quad$: Reject H_{o} which means support H_{A}
If the P-Value $>\boldsymbol{\alpha}$: Fail to Reject H_{o} which means Fail to support H_{A}

TI 84: Stat----- Tests ----- Z- Test.

Type I and Type II Errors

		Investate of Nature	
		thonulbyothesls is true	The null hyeothens is talse
Decision	We decide to reject the null hypothesis	Type I error (rejecting a true null hypothesis) P (type I error) $=a$	Correct decision
	We fail to reject the null hypothesis	Correct decision	Type II error (failing to reject a false null hypothesis) P (type II error) $=\beta$

Hypothesis Testing for μ
σ is not known

1. $\mathrm{n}>30$ or the population distribution is bell shaped to start with.
2. Then the CLT says that the sampling for \bar{x} will be bell shaped with

$$
\mu(\bar{x})=\mu
$$

Since σ is not known,
we use the student
t - Distribution
$H_{o}=$ Null Hypothesis
$H_{A}=$ Alternative Hypothesis

In hypothesis testing: Your claim (what you are trying to prove) must be worded in H_{A}, Because you control the level of confidence of the test.

Procedure:

1. Make a sketch.
2. Degrees of Freedom = d.f. $=n-1$
3. Find $t_{c}=\mathrm{t}$ critical from the given level of confidence.
4. Use the CLT to Compute $t_{\text {test }}=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}$
5. State your conclusion
6. Compute the P -value.

Your conclusion has to be one of two:
Either:

1. There is sufficient evidence to Reject H_{o} which means support H_{A} Or
2. There is Insufficient evidence to Reject H_{0}. This means fail to reject H_{0}, which means fail to support H_{A}.

The P-value = The probability of getting a sample as extreme as the one you have in the given problem.
$\alpha=$ Level of Significance, 1- $\alpha=$ level of Confidence
If the P-value $\leq \alpha \quad$: Reject H_{o} which means support H_{A}
If the P-Value > : Fail to Reject H_{o} which means Fail to support H_{A}

TI 84: Stat----- Tests ----- T- Test.

Type I and Type II Errors

		True State of Nature	
		Thenmil hypotheris is true	The null hys. othests is false
Decision	We decide to reject the null hypothesis	Type I error (rejecting a true null hypothesis) P (type I error) $-\alpha$	Correct decision
	We fail to reject the null hypothesis	Correct decision	Type II error (failing to reject a false null hypothesis) P (type ll error) $=\beta$

