Name

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the mean of the given probability distribution.

1)		
	x	P(x)
	0	0.19
	1	0.37

2 0.16

3 0.26

A) 1.74

B) 1.45

C) 1.55

D) 1.64

Solve the problem.

2) In a game, you have a 1/42 probability of winning \$67 and a 41/42 probability of losing \$7. What is your expected value?

C) \$1.60

D) -\$5.24

 $E(x) = \overline{2(x Ph)} = \frac{1}{40} \cdot 67 + (\frac{41}{40}(-7)) = -5.24$

Assume that a procedure yields a binomial distribution with a trial repeated n times. Use the binomial probability formula to find the probability of x successes given the probability p of success on a single trial.

3) n = 4, x = 3, $p = \frac{1}{6}$

A) 0.0039

B) 0.0231

(C) 0.0154

D) 0.0116

P(x=3) = 4 C3 (+)3(=) = binompolf (4, V6,3) = +0154

Find the standard deviation, σ, for the binomial distribution which has the stated values of n and p. Round your answer to the nearest hundredth.

4) n = 36; p = .2

A) $\sigma = 5.67$

B) $\sigma = -0.01$

C) $\sigma = 6.52$

D) $\sigma = 2.40$

J = / np(1-P) = /36x012x018 =

Find the mean, µ, for the binomial distribution which has the stated values of n and p. Round answer to the nearest tenth.

5) n = 33; p = .2

(A) $\mu = 6.6$

B) $\mu = 6.1$

C) $\mu = 7.3$

D) $\mu = 6.9$

M = Experted Value = Mean = np = 33x0,2