
Section 12.9: Representations of Functions
as Power Series

Differentiation and Integration of Power Series:

If the domain of a power series (i.e., the interval of convergence) is not a single
point, then (with the possible exception of endpoints—see note below):
1. f is differentiable in the same domain:

and

 

or 

NOTE:  

2. and the integral can be determined:

and 

or 

NOTES:
1. This result states that functions defined by power series behave exactly like

polynomial functions; i.e., they are continuous on their interval of convergence,
and derivatives and antiderivatives can be found just like for polynomials (by
differentiating and integrating each term)

2. After taking the derivative and if the original series has convergent endpoint(s),
then check the endpoints of the new series.  There is no need to check endpoints
if the original series did not have convergent endpoints.

3. After integration, check endpoints even if the original series has  no convergent
endpoints.
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Example:  Suppose . 

(a) Find the interval of convergence of f(x).
(b) Find  and find its interval of convergence.

(c) Find  and find its interval of convergence.

(a) We use the Ratio Test.

Thus, the radius of convergence is .  By solving the absolute value

equation, we find that the interval of convergence is at least 0 < x < 2 or (0, 2).
Now, we must check the endpoints.

x = 0:

This series diverges since it is -1 times the harmonic series.

x = 2:

This series converges since it is the alternating harmonic series.  Recall
the alternating harmonic series converges by the AST.

So, the interval of convergence for f(x) is .
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(b)  Now, let’s take the derivative of f(x).

By the result on page 1, we know this series converges at least on the interval
0 < x < 2.  Since the original power series did not converge at the endpoint x
= 0, the series found by taking the derivative does not converge at x = 0.  So, we
only need to check the endpoint x = 2.

x = 2:

This series diverges by the nth Term Test.
So, the interval of convergence for is 0 < x < 2 or (0, 2).

(c) Now, let’s take the integral of f(x):

By the result on page 1, we know that this new series converges for 0 < x < 2 or
(0, 2).  However, we need to check the endpoints.  (When integrating, the new
series may become convergent at the endpoints.)
x = 0:

Now, using the LCT and comparing the series to a p-series with p = 2

, we find that the series converges since
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x = 2:

This series converges by the AST since  and the series

is decreasing; that is,

.

Thus, the interval of convergence for the antiderivative of the power series is 
or [0, 2].

Power Series as Functions:

A power series represents an infinite series and a function with a specific domain.
Consider the geometric series

where a = 1 and r = x.  The interval of convergence, |x| < 1 or , determines
the domain of the function, .  Since we know a formula for the sum of a
convergent geometric series, we can say that

Examples:

1. Convert  to functional notation.  State the domain.

So, 
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2. Find the geometric series represented by  about a = 0.

The domain:  .

So, 

3. Develop a power series for  centered about a = !2.

So, 

Hence, the radius of convergence is r = 6 and the interval of convergence is
!8 < x < 4.  Thus,

Operations on Power Series:
Let  and .  Then

i.

ii.

iii.

NOTE:  These operations may change the interval of convergence of the power series.
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Example: Determine a power series for the function .

By using partial fractions decomposition, we see that

.

From page 3, we know that

.

Substituting -x for x, we see that

.

Thus,

The last line coming from the fact that when n is odd the coefficient of xn is -2 and when
n is even the coefficient is 0.  Using the Ratio Test, we can show that the interval of
convergence is !1 < x < 1.  (Verify this!)  The endpoints are not included.   (Verify this
also!)

Using Differentiation and Integration to Represent Functions as Power Series:

Examples:

1. Find the series representation for  centered at a = 0.

We begin by observing that

Now,
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Next, we take the derivative of the above series twice.

The last series converges for !1 < x < 1.
NOTE:  There is no need to check the endpoints since before taking derivatives of
the series, the geometric series did not have convergent endpoints.

2. Find a series representation for arctan x.
We first note that up to a constant

.

Now, we know (by geometric series) that

for !1 < x < 1.  Thus,

The above series converges for |x|2 < 1 or !1 < x < 1.
Now, we integrate the above power series to get

for !1 < x < 1.  Substituting x = 0, we find that C = 0.  Hence,
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which converges for !1 < x < 1.  However, since we integrated a power series, we
must check to see if the new series converges at the endpoints.

Check x = !1:   which converges by the

Alternating Series Test since

Check x = 1:   which converges by the Alternating

Series Test (see above).
Consequently, we find that



9

Exercises

1. Using a geometric series, develop a power series centered at a for the following
function.  State the domain.  (Be sure to check endpoints if applicable.)

(a)  about a = 2 Ans:

(b)  about a = 0 Ans:

(c)  about a = 0 Ans:

(d)  about a = 0 Ans:

HINT:  

2. Convert the following power series to functional notation.  State the domain.  (Be
sure to check endpoints if applicable.)

(a) Ans:

(b) Ans:

(c) Ans:

(d) Ans:

(e) Ans:

(f) Ans:


