Study Guide for Final Examination MATH 1502

1. Evaluate the integral below by each of the specified methods.

$$
\int \frac{x^{3}}{\sqrt{4+x^{2}}} d x
$$

(a) Use the trigonometric substitution $x=2 \tan \theta$.
(b) Use integration by parts with $u=x^{2}$.
2. Evaluate each of the indefinite integrals.
(a) $\int \csc ^{2} 5 x d x$
(b) $\int x e^{x^{2}} d x$
(c) $\int(2+3 x)^{10} d x$
(d) $\int x^{3} \tan x^{4} d x$
(e) $\int \frac{\sec 3 x}{\tan 3 x} d x$
(f) $\int\left(x^{2}+1\right)^{2} d x$
(g) $\int \frac{x^{2}}{x^{2}+4 x+5} d x$
3. Evaluate $\int \sec ^{6} 3 x d x$. (Use the trigonometric identity $1+\tan ^{2} \theta=\sec ^{2} \theta$.)
4. Use the Trapezoidal Rule with $n=4$ to approximate

$$
\int_{0}^{2 \pi} 2 \pi x \sqrt{1+\cos ^{2} x} d x
$$

5. The table below gives some values of a function L

\boldsymbol{t}	$\boldsymbol{L}(\boldsymbol{t})$
20	1.0
25	1.2
30	1.0
35	0.9
40	1.0
45	1.1
50	1.3
55	1.4
60	1.3

Approximate $\int_{20}^{60} L(t) d t$ using the Trapezoidal Rule and Simpson's Rule.

For problems 6 and 7 do each of the following:
(a) State why the integral is improper.
(b) Express the integral as a limit or limits.
(c) Evaluate the integral and state whether it diverges or converges.
6. $\int_{-7}^{2}(x-1)^{-2 / 3} d x$
7. $\int_{-\infty}^{0} e^{2 x} d x$
8. Find the particular solution of the differential equation that satisfies the given initial condition:

$$
d T+k(T-70) d t=0 ; \quad T(0)=140
$$

9. Find the sum of the geometric series: $\sum_{n=1}^{\infty} 5\left(\frac{2}{3}\right)^{n}$
10. Approximate the sum of each of these series with error less than 0.0001 :
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{3}+1}$
11. What information does the $n^{\text {th }}$-Term Test give about each of these series?
(a) $\sum_{n=1}^{\infty} \frac{\sin n}{n}$
(b) $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{2}+1}$
12. Determine the convergence or divergence of the series using the Limit Comparison Test:

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{n^{2}+1}}
$$

Name the series used in the comparison.
13. Determine the convergence or divergence of the series using the Integral Test:

$$
\sum_{n=1}^{\infty} \frac{n}{e^{n^{2}}}
$$

14. Determine whether the series, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 3^{n}}{2^{n} n^{2}}$ is absolutely convergent, conditionally convergent, or divergent.
15. What information does the Ratio Test give about this series?

$$
\sum_{n=1}^{\infty} \frac{5^{n-1}}{(n+1)!}
$$

16. Find the degree 5 Maclaurin polynomial for $f(x)=e^{2 x}$. Use it to approximate the value of $e^{0.5}$.
17. Determine the interval of convergence of the power series:

$$
\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n^{2} 2^{n+1}}
$$

18. Use the Basic List of Taylor Series to determine a power series for
(a) $f(x)=\cos x^{2}$
(b) $f(x)=\frac{1}{\sqrt{1-16 x^{2}}}$
19. Given the cardioid $r=1+\sin \theta$.
(a) Find the area inside it.
(b) Find its arc length.
20. Find the area of one leaf of $r=2 \cos 3 \theta$.

Answers

1. (a) $\frac{\left(4+x^{2}\right)^{3 / 2}}{3}-4 \sqrt{4+x^{2}}+C$
(b) $x^{2} \sqrt{4+x^{2}}-\frac{2}{3}\left(4+x^{2}\right)^{3 / 2}+C$

NOTE: These answers are equal. Both simplify to:

$$
\frac{\left(x^{2}-8\right) \sqrt{x^{2}+4}}{3}+C
$$

2. (a) $-\frac{1}{5} \cot 5 x+C$
(b) $\frac{1}{2} e^{x^{2}}+C$
(c) $\frac{1}{33}(2+3 x)^{11}+C$
(d) $-\frac{1}{4} \ln \left|\cos x^{4}\right|+C$
(e) $-\frac{1}{3} \ln |\csc 3 x+\cot 3 x|+C$
(f) $\frac{1}{5} x^{5}+\frac{2}{3} x^{3}+x+C$
(g) $x-2 \ln \left|x^{2}+4 x+5\right|$
$+3 \arctan (x+2)+C$
3. $\frac{1}{15} \tan ^{5} 3 x+\frac{2}{3} \tan ^{3} 3 x+\frac{1}{3} \tan 3 x+C$
4. 149.71
5. Trapezoidal Rule: 38.75

Simpson's Rule: 45.5
6. 9
7. $\frac{1}{2}$
8. $\quad T=70 e^{-k t}+70$
9. 10
10. (a) $1.08223390683\left(\mathrm{~S}_{15}\right)$; error $<.000099$
(b) $0.585648719085\left(\mathrm{~S}_{21}\right)$; error < . 000094
11. (a) no information
(b) diverges
12. diverges; $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
13. converges
14. diverges
15. converges
16. $P_{5}(x)=1+2 x+2 x^{2}+\frac{4}{3} x^{3}$
$+\frac{2}{3} x^{4}+\frac{4}{15} x^{5} ;$
$e^{0.5} \approx 1.64869791667$
17. $[1,5]$
18. (a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n}}{(2 n)!}$
(b) $\sum_{n=1}^{\infty} \frac{(2 n)!2^{2 n} x^{2 n}}{(n!)^{2}}$
19. (a) $\frac{3 \pi}{2}$
(b) 8
20. $\frac{\pi}{3}$

