Strategy	Form and/or conditions	How to test for convergence and divergence
Geometric	$\sum_{n=1}^{\infty}$ $n-1$ 2	$a(1-r^n)$
Series Test	$\sum_{n=1}^{\infty} ar = a + ar + ar + \dots$	$S_n = \frac{1-r}{1-r}$
		If $ r < 1$, the series will converge to $\frac{a}{1-r}$
		If $ r \ge 1$, the series will diverge
Test for Divergence	$\lim_{n \to \infty} a_n \neq 0 \text{ or } \lim_{n \to \infty} a_n = \pm \infty$	If $\lim_{n\to\infty} a_n \neq 0$, or $\lim_{n\to\infty} a_n = \pm \infty$, then the series will diverge
		(Note: the opposite is not true. If $\lim_{n \to \infty} a_n = 0$, then the series
		may converge or diverge)
Integral Test	<i>f</i> is a continuous, positive, decreasing function on $[1, \infty)$ and $a_n = f(n)$	If $\int_{1}^{\infty} f(x) dx$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
	$\int_{n+1}^{\infty} f(x) dx \le R_n \le \int_{n}^{\infty} f(x) dx$	If $\int_{1}^{\infty} f(x) dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.
	$s_n + \int_{n+1}^{\infty} f(x) dx \le s \le s_n + \int_{n}^{\infty} f(x) dx$	
<i>p</i> -Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	If $p > 1$, the series is convergent. If $p \le 1$ the series is divergent.
Comparison Test	$\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms	If $\sum_{n=1}^{\infty} b_n$ is convergent and $a_n \le b_n \ \forall n \ge 1$, then $\sum_{n=1}^{\infty} a_n$ is also convergent. If $\sum_{n=1}^{\infty} b_n$ is divergent and $a_n \ge b_n \ \forall n \ge 1$, then $\sum_{n=1}^{\infty} a_n$ is also divergent.
Limit Comparison Test	$\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive	If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$, where <i>c</i> is a finite number > 0, then either both series converge or both series diverge.
	terms	If $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
		If $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$, and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.
Alternating Series Test	$\sum (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 \dots$	If $b_{n+1} \le b_n$ for $\forall n \ge 1$, and $\lim_{n \to \infty} b_n = 0$, then the series
Series Test	$b_n > 0$	converges. $ R_n \le b_{n+1}$
Ratio Test	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_{n+1}} \right = L$	If $L < 1$, the series is absolutely convergent and hence convergent
Ratio Test	$\lim_{n\to\infty} a_n \mid z$	If $L > 1$ or $L = \infty$, the series is divergent.
	(Use when factorials or numbers to the <i>n</i> th power are used)	If $L = 1$, no conclusion can be drawn.
		If $L < 1$, the series is absolutely convergent and hence
Root Test	$\lim_{n \to \infty} \sqrt[n]{ a_n } = L$	convergent. If $L > 1$ or $L = \infty$, the series is divergent.
1000 1000	$n \rightarrow \infty$	If $L = 1$, no conclusion can be drawn.
	(Use when the whole argument is raised to the <i>n</i> th power)	