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Strategy Form and/or conditions How to test for convergence and divergence 

Geometric 
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If r < 1, the series will converge to 
r

a
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If ,1r  the series will diverge 

Test for 

Divergence 
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(Note: the opposite is not true.  If 0lim 
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a , then the series 

may converge or diverge) 

 

Integral Test  

 

 

 

 

 

f is a continuous, positive, decreasing 

function on [1, ) and )(nfan   
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If 


1

)( dxxf  is convergent, then 


1n

na is convergent. 
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)( dxxf  is divergent, then
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1n

na is divergent. 

p-Series 
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If p > 1, the series is convergent. 

If p 1 the series is divergent. 

Comparison 

Test 
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also divergent. 

Limit 

Comparison 

Test 
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Alternating 

Series Test 
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Ratio Test 
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(Use when factorials or numbers to                                               

the nth power are used) 

If L < 1, the series is absolutely convergent and hence 

convergent. 

If L > 1 or L= , the series is divergent. 

If L = 1, no conclusion can be drawn. 

 

 

Root Test 
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(Use when the whole argument is raised to 

the nth power) 

If L < 1, the series is absolutely convergent and hence 

convergent. 

If L > 1 or L= , the series is divergent. 

If L = 1, no conclusion can be drawn. 

 

   series converge or both series diverge. 


