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Form and/or conditions
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How to test for convergence and divergence
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If |r| < 1, the series will converge to _a
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If [r|>1, the series will diverge
If |iman -0, 0r |iman — 40, then the series will diverge
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(Note: the opposite is not true. If lima. =0: then the series
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may converge or diverge)

If _[ f (X)dX is convergent, then Z a, is convergent.
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If I f(X)dX is divergent, then Z an is divergent.
1 n=1

If p > 1, the series is convergent.
If p< 1the series is divergent.

If an is convergentand a, <b. ¥n>1, then Zan is
n=1 =1
also convergent.

If an is divergentand &, > b, V¥n=>1, then Zan is
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also divergent.

If |ima_” =, Wwhere c is a finite number > 0, then either both

n—w M series converge or both series diverge.
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If lim—=0.and an converges, then Zan converges.
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If |"fna_n =0, and an diverges, then Zan diverges.
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If b, <b, for ¥n>1,and limb. =0: then the series
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CONverges.
|Rn| < bn+1
If L < 1, the series is absolutely convergent and hence
convergent.

If L > 1 or L=00, the series is divergent.
If L = 1, no conclusion can be drawn.

If L < 1, the series is absolutely convergent and hence
convergent.

If L > 1 or L=00, the series is divergent.

If L =1, no conclusion can be drawn.



