960 🗆 CHAPTER 12 INFINITE SEQUENCES AND SERIES

- 38. (a) Following the hint, we get that |a_n| < rⁿ for n ≥ N, and so since the geometric series ∑_{n=1}[∞] rⁿ converges (0 < r < 1), the series ∑_{n=N}[∞] |a_n| converges as well by the Comparison Test, and hence so does ∑_{n=1}[∞] |a_n|, so ∑_{n=1}[∞] a_n is absolutely convergent.
 - (b) If lim_{n→∞} ⁿ√|a_n| = L > 1, then there is an integer N such that ⁿ√|a_n| > 1 for all n ≥ N, so |a_n| > 1 for n ≥ N. Thus, lim_{n→∞} a_n ≠ 0, so ∑_{n=1}[∞] a_n diverges by the Test for Divergence.

5.

6.

7.]

S

d

8. J

li k-

01

9. $\sum_{k=1}^{\infty}$

 $\lim_{k \to \infty}$

10. Let

dec

inte

- 39. (a) Since ∑ a_n is absolutely convergent, and since |a_n⁺| ≤ |a_n| and |a_n⁻| ≤ |a_n| (because a_n⁺ and a_n⁻ each equal either a_n or 0), we conclude by the Comparison Test that both ∑ a_n⁺ and ∑ a_n⁻ must be absolutely convergent. (Or use Theorem 12.2.8.)
 - (b) We will show by contradiction that both ∑ a_n⁺ and ∑ a_n⁻ must diverge. For suppose that ∑ a_n⁺ converged. Then so would ∑ (a_n⁺ ½ a_n) by Theorem 12.2.8. But ∑ (a_n⁺ ½ a_n) = ∑ [½ (a_n + |a_n|) ½ a_n] = ½ ∑ |a_n|, which diverges because ∑ a_n is only conditionally convergent. Hence, ∑ a_n⁺ can't converge. Similarly, neither can ∑ a_n⁻.
- 40. Let ∑ b_n be the rearranged series constructed in the hint. [This series can be constructed by virtue of the result of Exercise 39(b).] This series will have partial sums s_n that oscillate in value back and forth across r. Since lim a_n = 0 (by Theorem 12.2.6), and since the size of the oscillations |s_n r| is always less than |a_n| because of the way ∑ b_n was constructed, we have that ∑ b_n = lim s_n = r.

12.7 Strategy for Testing Series

- 1. $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2 1}{n^2 + 1} = \lim_{n \to \infty} \frac{1 1/n^2}{1 + 1/n} = 1 \neq 0$, so the series $\sum_{n=1}^{\infty} \frac{n^2 1}{n^2 + 1}$ diverges by the Test for Divergence.
- 2. If $a_n = \frac{n-1}{n^2+n}$ and $b_n = \frac{1}{n}$, then $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2-n}{n^2+n} = \lim_{n \to \infty} \frac{1-1/n}{1+1/n} = 1$, so the series $\sum_{n=1}^{\infty} \frac{n-1}{n^2+n}$ diverges by the Limit Comparison Test with the harmonic series.
- 3. $\frac{1}{n^2 + n} < \frac{1}{n^2}$ for all $n \ge 1$, so $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$ converges by the Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n^2}$, a *p*-series that converges because p = 2 > 1.

4. Let
$$b_n = \frac{n-1}{n^2+n}$$
. Then $b_1 = 0$, and $b_2 = b_3 = \frac{1}{6}$, but $b_n > b_{n+1}$ for $n \ge 3$ since
 $\left(\frac{x-1}{x^2+x}\right)' = \frac{(x^2+x)-(x-1)(2x+1)}{(x^2+x)^2} = \frac{-x^2+2x+1}{(x^2+x)^2} = \frac{2-(x-1)^2}{(x^2+x)^2} < 0$ for $x \ge 3$. Thus,

 $\{b_n \mid n \ge 3\}$ is decreasing and $\lim_{n \to \infty} b_n = 0$, so $\sum_{n=3}^{\infty} (-1)^{n-1} \frac{n-1}{n^2+n}$ converges by the Alternating Series Test. Hence, the full series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n-1}{n^2+n}$ also converges.

5.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+2}}{2^{3(n+1)}} \cdot \frac{2^{3n}}{(-3)^{n+1}} \right| = \lim_{n \to \infty} \left| \frac{-3 \cdot 2^{3n}}{2^{3n} \cdot 2^3} \right| = \lim_{n \to \infty} \frac{3}{2^3} = \frac{3}{8} < 1, \text{ so the series}$$

 $\sum_{n=1}^{\infty} \frac{(-3)^{n+1}}{2^{3n}}$ is absolutely convergent by the Ratio Test.

6.
$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{3n}{1+8n} = \lim_{n \to \infty} \frac{3}{1/n+8} = \frac{3}{8} < 1, \text{ so } \sum_{n=1}^{\infty} \left(\frac{3n}{1+8n}\right)^n \text{ converges by the Root Test.}$$

7. Let
$$f(x) = \frac{1}{x\sqrt{\ln x}}$$
. Then f is positive, continuous, and decreasing on $[2, \infty)$, so we can apply the Integral Test.
Since $\int \frac{1}{x\sqrt{\ln x}} dx \begin{bmatrix} u = \ln x, \\ du = dx/x \end{bmatrix} = \int u^{-1/2} du = 2u^{1/2} + C = 2\sqrt{\ln x} + C$, we find
 $\int_{2}^{\infty} \frac{dx}{x\sqrt{\ln x}} = \lim_{t \to \infty} \int_{2}^{t} \frac{dx}{x\sqrt{\ln x}} = \lim_{t \to \infty} \left[2\sqrt{\ln x}\right]_{2}^{t} = \lim_{t \to \infty} \left(2\sqrt{\ln t} - 2\sqrt{\ln 2}\right) = \infty$. Since the integral diverges, the given series $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$ diverges.

8.
$$\sum_{k=1}^{\infty} \frac{2^k k!}{(k+2)!} = \sum_{k=1}^{\infty} \frac{2^k}{(k+1)(k+2)}.$$
 Using the Ratio Test, we get
$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left| \frac{2^{k+1}}{(k+2)(k+3)} \cdot \frac{(k+1)(k+2)}{2^k} \right| = \lim_{k \to \infty} \left(2 \cdot \frac{k+1}{k+3} \right) = 2 > 1, \text{ so the series diverges.}$$

Or: Use the Test for Divergence.

9. $\sum_{k=1}^{\infty} k^2 e^{-k} = \sum_{k=1}^{\infty} \frac{k^2}{e^k}.$ Using the Ratio Test, we get $\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left| \frac{(k+1)^2}{e^{k+1}} \cdot \frac{e^k}{k^2} \right| = \lim_{k \to \infty} \left[\left(\frac{k+1}{k} \right)^2 \cdot \frac{1}{e} \right] = 1^2 \cdot \frac{1}{e} = \frac{1}{e} < 1, \text{ so the series converges.}$

10. Let $f(x) = x^2 e^{-x^3}$ Then f is continuous and positive on $[1, \infty)$, and $f'(x) = \frac{x(2-3x^3)}{e^{x^3}} < 0$ for $x \ge 1$, so f is decreasing on $[1, \infty)$ as well, and we can apply the Integral Test. $\int_1^\infty x^2 e^{-x^3} dx = \lim_{t \to \infty} \left[-\frac{1}{3} e^{-x^3} \right]_1^t = \frac{1}{3e}$, so the integral converges, and hence, the series converges.

1

11.
$$b_n = \frac{1}{n \ln n} > 0$$
 for $n \ge 2$, $\{b_n\}$ is decreasing, and $\lim_{n \to \infty} b_n = 0$, so the given series $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n \ln n}$ converges by 20. $\lim_{k \to \infty} b_k = 0$

the Alternating Series Test.

Τŧ

R

wi

Si

 $\sum_{n=1}^{\infty}$

26. li

 $\sum_{n=1}^{\infty}$

27. \int_{2}

an

28. Si

22. $\frac{1}{n^2}$

12. Let $b_n = \frac{n}{n^2 + 25}$. Then $b_n > 0$, $\lim_{n \to \infty} b_n = 0$, and **21.** $\sum_{n=1}^{\infty}$

$$b_n - b_{n+1} = \frac{n}{n^2 + 25} - \frac{n+1}{n^2 + 2n + 26} = \frac{n^2 + n - 25}{(n^2 + 25)(n^2 + 2n + 26)}$$
, which is positive for $n \ge 5$, so the

sequence $\{b_n\}$ decreases from n = 5 on. Hence, the given series $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 25}$ converges by the Alternating

Series Test.

13.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{3^{n+1} (n+1)^2}{(n+1)!} \cdot \frac{n!}{3^n n^2} \right| = \lim_{n \to \infty} \left[\frac{3(n+1)^2}{(n+1)n^2} \right] = 3 \lim_{n \to \infty} \frac{n+1}{n^2} = 0 < 1, \text{ so the series}$$
23. U:

$$\sum_{n=1}^{\infty} \frac{3^n n^2}{n!}$$
 converges by the Ratio Test.

14. The series $\sum_{n=1}^{\infty} \sin n$ diverges by the Test for Divergence since $\lim_{n \to \infty} \sin n$ does not exist.

$$15. \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!}{2 \cdot 5 \cdot 8 \cdots (3n+2)[3(n+1)+2]} \cdot \frac{2 \cdot 5 \cdot 8 \cdots (3n+2)}{n!} \right|$$

$$= \lim_{n \to \infty} \frac{n+1}{3n+5} = \frac{1}{3} < 1$$

$$25. U_5$$

so the series $\sum_{n=0}^{\infty} \frac{n!}{2 \cdot 5 \cdot 8 \cdots (3n+2)}$ converges by the Ratio Test.

16. Using the Limit Comparison Test with $a_n = \frac{n^2 + 1}{n^3 + 1}$ and $b_n = \frac{1}{n}$, we have

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \left(\frac{n^2 + 1}{n^3 + 1} \cdot \frac{n}{1} \right) = \lim_{n \to \infty} \frac{n^3 + n}{n^3 + 1} = \lim_{n \to \infty} \frac{1 + 1/n^2}{1 + 1/n^3} = 1 > 0. \text{ Since } \sum_{n=1}^{\infty} b_n \text{ is the divergent}$$

harmonic series, $\sum_{n=1}^{\infty} a_n$ is also divergent.

17.
$$\lim_{n \to \infty} 2^{1/n} = 2^0 = 1$$
, so $\lim_{n \to \infty} (-1)^n 2^{1/n}$ does not exist and the series $\sum_{n=1}^{\infty} (-1)^n 2^{1/n}$ diverges by the

Test for Divergence.

18.
$$b_n = \frac{1}{\sqrt{n-1}}$$
 for $n \ge 2$. $\{b_n\}$ is a decreasing sequence of positive numbers and $\lim_{n \to \infty} b_n = 0$, so $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n-1}}$ converges by the Alternating Series Test

e Alternating Series Test.

19. Let
$$f(x) = \frac{\ln x}{\sqrt{x}}$$
. Then $f'(x) = \frac{2 - \ln x}{2x^{3/2}} < 0$ when $\ln x > 2$ or $x > e^2$, so $\frac{\ln n}{\sqrt{n}}$ is decreasing for $n > e^2$.

By l'Hospital's Rule, $\lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} = \lim_{n \to \infty} \frac{1/n}{1/(2\sqrt{n})} = \lim_{n \to \infty} \frac{2}{\sqrt{n}} = 0$, so the series $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$ converges by the Alternating Series Test.

 $\sum_{n=1}^{\infty}$

29. 0 ·

 $\sum_{n=1}^{\infty}$

SECTION 12.7 STRATEGY FOR TESTING SERIES

20.
$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left| \frac{k+6}{5^{k+1}} \cdot \frac{5^k}{k+5} \right| = \frac{1}{5} \lim_{k \to \infty} \frac{k+6}{k+5} = \frac{1}{5} < 1$$
, so the series $\sum_{k=1}^{\infty} \frac{k+5}{5^k}$ converges by the Ratio

- 21. $\sum_{n=1}^{\infty} \frac{(-2)^{2n}}{n^n} = \sum_{n=1}^{\infty} \left(\frac{4}{n}\right)^n$. $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{4}{n} = 0 < 1$, so the given series is absolutely convergent by the
- 22. $\frac{\sqrt{n^2-1}}{n^3+2n^2+5} < \frac{n}{n^3+2n^2+5} < \frac{n}{n^3} = \frac{1}{n^2}$ for $n \ge 1$, so $\sum_{n=1}^{\infty} \frac{\sqrt{n^2-1}}{n^3+2n^2+5}$ converges by the Comparison Test with the convergent *p*-series $\sum_{n=1}^{\infty} 1/n^2$ (p=2>1).

23. Using the Limit Comparison Test with $a_n = \tan\left(\frac{1}{n}\right)$ and $b_n = \frac{1}{n}$, we have

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\tan(1/n)}{1/n} = \lim_{x \to \infty} \frac{\tan(1/x)}{1/x} \stackrel{\text{H}}{=} \lim_{x \to \infty} \frac{\sec^2(1/x) \cdot (-1/x^2)}{-1/x^2} = \lim_{x \to \infty} \sec^2(1/x) = 1^2 = 1 > 0.$$

Since $\sum_{n=1}^{\infty} b_n$ is the divergent harmonic series, $\sum_{n=1}^{\infty} a_n$ is also divergent.

24. $\frac{|\cos(n/2)|}{n^2+4n} < \frac{1}{n^2+4n} < \frac{1}{n^2}$ and since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges $(p=2>1), \sum_{n=1}^{\infty} \frac{\cos(n/2)}{n^2+4n}$ converges absolutely by

the Comparison Test.

25. Use the Ratio Test. $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!}{e^{(n+1)^2}} \cdot \frac{e^{n^2}}{n!} \right| = \lim_{n \to \infty} \frac{(n+1)n! \cdot e^{n^2}}{e^{n^2 + 2n + 1}n!} = \lim_{n \to \infty} \frac{n+1}{e^{2n+1}} = 0 < 1, \text{ so}$ $\sum_{n=1}^{\infty} \frac{n!}{e^{n^2}} \text{ converges.}$ **26.** $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{n^2 + 2n + 2}{5^{n+1}} \cdot \frac{5^n}{n^2 + 1} \right) = \lim_{n \to \infty} \left(\frac{1 + 2/n + 2/n^2}{1 + 1/n^2} \cdot \frac{1}{5} \right) = \frac{1}{5} < 1, \text{ so}$ $\sum_{n=1}^{\infty} \frac{n^2 + 1}{5^n}$ converges by the Ratio Test. 27. $\int_{0}^{\infty} \frac{\ln x}{x^2} dx = \lim_{t \to \infty} \left[-\frac{\ln x}{x} - \frac{1}{x} \right]_{t}^{t} \text{ (using integration by parts)} \stackrel{\text{H}}{=} 1. \text{ So } \sum_{n=1}^{\infty} \frac{\ln n}{n^2} \text{ converges by the Integral Test,}$ and since $\frac{k \ln k}{(k+1)^3} < \frac{k \ln k}{k^3} = \frac{\ln k}{k^2}$, the given series $\sum_{k=1}^{\infty} \frac{k \ln k}{(k+1)^3}$ converges by the Comparison Test. **28.** Since $\left\{\frac{1}{n}\right\}$ is a decreasing sequence, $e^{1/n} \le e^{1/1} = e$ for all $n \ge 1$, and $\sum_{n=1}^{\infty} \frac{e}{n^2}$ converges (p = 2 > 1), so $\sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2}$ converges by the Comparison Test. (Or use the Integral Test.) **29.** $0 < \frac{\tan^{-1} n}{n^{3/2}} < \frac{\pi/2}{n^{3/2}}$. $\sum_{n=1}^{\infty} \frac{\pi/2}{n^{3/2}} = \frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ which is a convergent *p*-series $(p = \frac{3}{2} > 1)$, so $\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n^{3/2}}$ converges by the Comparison Test.

964 D CHAPTER 12 INFINITE SEQUENCES AND SERIES

30. Let
$$f(x) = \frac{\sqrt{x}}{x+5}$$
. Then $f(x)$ is continuous and positive on $[1, \infty)$, and since $f'(x) = \frac{5-x}{2\sqrt{x}(x+5)^2} < 0$ for

x > 5, f(x) is eventually decreasing, so we can use the Alternating Series Test.

$$\lim_{n \to \infty} \frac{\sqrt{n}}{n+5} = \lim_{n \to \infty} \frac{1}{n^{1/2} + 5n^{-1/2}} = 0$$
, so the series $\sum_{j=1}^{\infty} (-1)^j \frac{\sqrt{j}}{j+5}$ converges.

31.
$$\lim_{k \to \infty} a_k = \lim_{k \to \infty} \frac{5^k}{3^k + 4^k} = [\text{divide by } 4^k] \lim_{k \to \infty} \frac{(5/4)^k}{(3/4)^k + 1} = \infty \text{ since } \lim_{k \to \infty} \left(\frac{3}{4}\right)^k = 0 \text{ and } \lim_{k \to \infty} \left(\frac{5}{4}\right)^k = \infty.$$

Thus,
$$\sum_{k=1}^{\infty} \frac{5^k}{3^k + 4^k}$$
 diverges by the Test for Divergence.

32.
$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{2n}{n^2} = \lim_{n \to \infty} \frac{2}{n} = 0$$
, so the series $\sum_{n=1}^{\infty} \frac{(2n)^n}{n^{2n}}$ converges by the Root Test. 1.

33. Let
$$a_n = \frac{\sin(1/n)}{\sqrt{n}}$$
 and $b_n = \frac{1}{n\sqrt{n}}$. Then $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sin(1/n)}{1/n} = 1 > 0$, so $\sum_{n=1}^{\infty} \frac{\sin(1/n)}{\sqrt{n}}$ converges by limit comparison with the convergent *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ $(p = 3/2 > 1)$.

34. $0 \le n \cos^2 n \le n$, so $\frac{1}{n+n \cos^2 n} \ge \frac{1}{n+n} = \frac{1}{2n}$. Thus, $\sum_{n=1}^{\infty} \frac{1}{n+n \cos^2 n}$ diverges by comparison with

 $\sum_{n=1}^{\infty} \frac{1}{2n}$, which is a constant multiple of the (divergent) harmonic series.

35.
$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^{n^2/n} = \lim_{n \to \infty} \frac{1}{[(n+1)/n]^n} = \frac{1}{\lim_{n \to \infty} (1+1/n)^n} = \frac{1}{e} < 1, \text{ so the series}$$
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2} \text{ converges by the Root Test.}$$

36. Note that $(\ln n)^{\ln n} = (e^{\ln \ln n})^{\ln n} = (e^{\ln n})^{\ln \ln n} = n^{\ln \ln n}$ and $\ln \ln n \to \infty$ as $n \to \infty$, so $\ln \ln n > 2$ for sufficiently large n. For these n we have $(\ln n)^{\ln n} > n^2$, so $\frac{1}{(\ln n)^{\ln n}} < \frac{1}{n^2}$. Since $\sum_{n=2}^{\infty} \frac{1}{n^2}$ converges (p = 2 > 1), so does $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$ by the Comparison Test.

37.
$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \left(2^{1/n} - 1\right) = 1 - 1 = 0 < 1$$
, so the series
$$\sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1\right)^n$$
 converges by the Root Test.

31

2.

3.

¢

1

C