38. (a) Following the hint, we get that $\left|a_{n}\right|<r^{n}$ for $n \geq N$, and so since the geometric series $\sum_{n=1}^{\infty} r^{n}$ converges ($0<r<1$), the series $\sum_{n=N}^{\infty}\left|a_{n}\right|$ converges as well by the Comparison Test, and hence so does $\sum_{n=1}^{\infty}\left|a_{n}\right|$, so $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
(b) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L>1$, then there is an integer N such that $\sqrt[n]{\left|a_{n}\right|}>1$ for all $n \geq N$, so $\left|a_{n}\right|>1$ for $n \geq N$. Thus, $\lim _{n \rightarrow \infty} a_{n} \neq 0$, so $\sum_{n=1}^{\infty} a_{n}$ diverges by the Test for Divergence.
39. (a) Since $\sum a_{n}$ is absolutely convergent, and since $\left|a_{n}^{+}\right| \leq\left|a_{n}\right|$ and $\left|a_{n}^{-}\right| \leq\left|a_{n}\right|$ (because a_{n}^{+}and a_{n}^{-}each equal either a_{n} or 0), we conclude by the Comparison Test that both $\sum a_{n}^{+}$and $\sum a_{n}^{-}$must be absolutely convergent. (Or usé Theorem 12.2.8.)
(b) We will show by contradiction that both $\sum a_{n}^{+}$and $\sum a_{n}^{-}$must diverge. For suppose that $\sum a_{n}^{+}$converged. Then so would $\sum\left(a_{n}^{+}-\frac{1}{2} a_{n}\right)$ by Theorem 12.2.8. But $\sum\left(a_{n}^{+}-\frac{1}{2} a_{n}\right)=\sum\left[\frac{1}{2}\left(a_{n}+\left|a_{n}\right|\right)-\frac{1}{2} a_{n}\right]=\frac{1}{2} \sum\left|a_{n}\right|$, which diverges because $\sum a_{n}$ is only conditionally convergent. Hence, $\sum a_{n}^{+}$can't converge. Similarly, neither can $\sum a_{n}^{-}$.
40. Let $\sum b_{n}$ be the rearranged series constructed in the hint. [This series can be constructed by virtue of the result of Exercise 39(b).] This series will have partial sums s_{n} that oscillate in value back and forth across r.

Since $\lim _{n \rightarrow \infty} a_{n}=0$ (by Theorem 12.2.6), and since the size of the oscillations $\left|s_{n}-r\right|$ is always less than $\left|a_{n}\right|$ because of the way $\sum b_{n}$ was constructed, we have that $\sum b_{n}=\lim _{n \rightarrow \infty} s_{n}=r$.

12.7 Strategy for Testing Series

1. $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}-1}{n^{2}+1}=\lim _{n \rightarrow \infty} \frac{1-1 / n^{2}}{1+1 / n}=1 \neq 0$, so the series $\sum_{n=1}^{\infty} \frac{n^{2}-1}{n^{2}+1}$ diverges by the Test for Divergence.
2. If $a_{n}=\frac{n-1}{n^{2}+n}$ and $b_{n}=\frac{1}{n}$, then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}-n}{n^{2}+n}=\lim _{n \rightarrow \infty} \frac{1-1 / n}{1+1 / n}=1$, so the series $\sum_{n=1}^{\infty} \frac{n-1}{n^{2}+n}$ diverges by the Limit Comparison Test with the harmonic series.
3. $\frac{1}{n^{2}+n}<\frac{1}{n^{2}}$ for all $n \geq 1$, so $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n}$ converges by the Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, a p-series that converges because $p=2>1$.
4.
5.

.
7. 1
10. Let
4. Let $b_{n}=\frac{n-1}{n^{2}+n}$. Then $b_{1}=0$, and $b_{2}=b_{3}=\frac{1}{6}$, but $b_{n}>b_{n+1}$ for $n \geq 3$ since

$$
\left(\frac{x-1}{x^{2}+x}\right)^{\prime}=\frac{\left(x^{2}+x\right)-(x-1)(2 x+1)}{\left(x^{2}+x\right)^{2}}=\frac{-x^{2}+2 x+1}{\left(x^{2}+x\right)^{2}}=\frac{2-(x-1)^{2}}{\left(x^{2}+x\right)^{2}}<0 \text { for } x \geq 3 . \text { Thus, }
$$

$\left\{b_{n} \mid n \geq 3\right\}$ is decreasing and $\lim _{n \rightarrow \infty} b_{n}=0$, so $\sum_{n=3}^{\infty}(-1)^{n-1} \frac{n-1}{n^{2}+n}$ converges by the Alternating Series Test. Hence, the full series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n-1}{n^{2}+n}$ also converges.
5. $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-3)^{n+2}}{2^{3(n+1)}} \cdot \frac{2^{3 n}}{(-3)^{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{-3 \cdot 2^{3 n}}{2^{3 n} \cdot 2^{3}}\right|=\lim _{n \rightarrow \infty} \frac{3}{2^{3}}=\frac{3}{8}<1$, so the series $\sum_{n=1}^{\infty} \frac{(-3)^{n+1}}{2^{3 n}}$ is absolutely convergent by the Ratio Test.
6. $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{3 n}{1+8 n}=\lim _{n \rightarrow \infty} \frac{3}{1 / n+8}=\frac{3}{8}<1$, so $\sum_{n=1}^{\infty}\left(\frac{3 n}{1+8 n}\right)^{n}$ converges by the Root Test.
7. Let $f(x)=\frac{1}{x \sqrt{\ln x}}$. Then f is positive, continuous, and decreasing on $[2, \infty)$, so we can apply the Integral Test.

Since $\int \frac{1}{x \sqrt{\ln x}} d x\left[\begin{array}{c}u=\ln x, \\ d u=d x / x\end{array}\right]=\int u^{-1 / 2} d u=2 u^{1 / 2}+C=2 \sqrt{\ln x}+C$, we find
$\int_{2}^{\infty} \frac{d x}{x \sqrt{\ln x}}=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{d x}{x \sqrt{\ln x}}=\lim _{t \rightarrow \infty}[2 \sqrt{\ln x}]_{2}^{t}=\lim _{t \rightarrow \infty}(2 \sqrt{\ln t}-2 \sqrt{\ln 2})=\infty$. Since the integral diverges, the given series $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$ diverges.
8. $\sum_{k=1}^{\infty} \frac{2^{k} k!}{(k+2)!}=\sum_{k=1}^{\infty} \frac{2^{k}}{(k+1)(k+2)}$. Using the Ratio Test, we get
$\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{2^{k+1}}{(k+2)(k+3)} \cdot \frac{(k+1)(k+2)}{2^{k}}\right|=\lim _{k \rightarrow \infty}\left(2 \cdot \frac{k+1}{k+3}\right)=2>1$, so the series diverges. Or: Use the Test for Divergence.
9. $\sum_{k=1}^{\infty} k^{2} e^{-k}=\sum_{k=1}^{\infty} \frac{k^{2}}{e^{k}}$. Using the Ratio Test, we get
$\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{(k+1)^{2}}{e^{k+1}} \cdot \frac{e^{k}}{k^{2}}\right|=\lim _{k \rightarrow \infty}\left[\left(\frac{k+1}{k}\right)^{2} \cdot \frac{1}{e}\right]=\mathbf{1}^{2} \cdot \frac{1}{e}=\frac{1}{e}<1$, so the series converges.
10. Let $f(x)=x^{2} e^{-x^{3}}$ Then f is continuous and positive on $[1, \infty)$, and $f^{\prime}(x)=\frac{x\left(2-3 x^{3}\right)}{e^{x^{3}}}<0$ for $x \geq 1$, so f is decreasing on $[1, \infty)$ as well, and we can apply the Integral Test. $\int_{1}^{\infty} x^{2} e^{-x^{3}} d x=\lim _{t \rightarrow \infty}\left[-\frac{1}{3} e^{-x^{3}}\right]_{1}^{t}=\frac{1}{3 e}$, so the integral converges, and hence, the series converges.
11. $b_{n}=\frac{1}{n \ln n}>0$ for $n \geq 2,\left\{b_{n}\right\}$ is decreasing, and $\lim _{n \rightarrow \infty} b_{n}=0$, so the given series $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n \ln n}$ converges by the Alternating Series Test.
20. li
12. Let $b_{n}=\frac{n}{n^{2}+25}$. Then $b_{n}>0, \lim _{n \rightarrow \infty} b_{n}=0$, and $b_{n}-b_{n+1}=\frac{n}{n^{2}+25}-\frac{n+1}{n^{2}+2 n+26}=\frac{n^{2}+n-25}{\left(n^{2}+25\right)\left(n^{2}+2 n+26\right)}$, which is positive for $n \geq 5$, so the sequence $\left\{b_{n}\right\}$ decreases from $n=5$ on. Hence, the given series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{2}+25}$ converges by the Alternating Series Test.
13. $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{3^{n+1}(n+1)^{2}}{(n+1)!} \cdot \frac{n!}{3^{n} n^{2}}\right|=\lim _{n \rightarrow \infty}\left[\frac{3(n+1)^{2}}{(n+1) n^{2}}\right]=3 \lim _{n \rightarrow \infty} \frac{n+1}{n^{2}}=0<1$, so the series $\sum_{n=1}^{\infty} \frac{3^{n} n^{2}}{n!}$ converges by the Ratio Test.
21. $\sum_{n=}^{o}$

Rı
22. \bar{n}
wi
23. U:
14. The series $\sum_{n=1}^{\infty} \sin n$ diverges by the Test for Divergence since $\lim _{n \rightarrow \infty} \sin n$ does not exist.
15. $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{2 \cdot 5 \cdot 8 \cdots(3 n+2)[3(n+1)+2]} \cdot \frac{2 \cdot 5 \cdot 8 \cdots(3 n+2)}{n!}\right|$

$$
=\lim _{n \rightarrow \infty} \frac{n+1}{3 n+5}=\frac{1}{3}<1
$$

so the series $\sum_{n=0}^{\infty} \frac{n!}{2 \cdot 5 \cdot 8 \cdots(3 n+2)}$ converges by the Ratio Test.
16. Using the Limit Comparison Test with $a_{n}=\frac{n^{2}+1}{n^{3}+1}$ and $b_{n}=\frac{1}{n}$, we have $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty}\left(\frac{n^{2}+1}{n^{3}+1} \cdot \frac{n}{1}\right)=\lim _{n \rightarrow \infty} \frac{n^{3}+n}{n^{3}+1}=\lim _{n \rightarrow \infty} \frac{1+1 / n^{2}}{1+1 / n^{3}}=1>0$. Since $\sum_{n=1}^{\infty} b_{n}$ is the divergent harmonic series, $\sum_{n=1}^{\infty} a_{n}$ is also divergent.
17. $\lim _{n \rightarrow \infty} 2^{1 / n}=2^{0}=1$, so $\lim _{n \rightarrow \infty}(-1)^{n} 2^{1 / n}$ does not exist and the series $\sum_{n=1}^{\infty}(-1)^{n} 2^{1 / n}$ diverges by the Test for Divergence.
18. $b_{n}=\frac{1}{\sqrt{n}-1}$ for $n \geq 2 .\left\{b_{n}\right\}$ is a decreasing sequence of positive numbers and $\lim _{n \rightarrow \infty} b_{n}=0$, so $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}-1}$ converges by the Alternating Series Test.
19. Let $f(x)=\frac{\ln x}{\sqrt{x}}$. Then $f^{\prime}(x)=\frac{2-\ln x}{2 x^{3 / 2}}<0$ when $\ln x>2$ or $x>e^{2}$, so $\frac{\ln n}{\sqrt{n}}$ is decreasing for $n>e^{2}$.

By l'Hospital's Rule, $\lim _{n \rightarrow \infty} \frac{\ln n}{\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{1 / n}{1 /(2 \sqrt{n})}=\lim _{n \rightarrow \infty} \frac{2}{\sqrt{n}}=0$, so the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{\sqrt{n}}$ converges by the Alternating Series Test.
24. $\frac{\mathrm{cc}}{r}$ th
25. Us
20. $\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{k+6}{5^{k+1}} \cdot \frac{5^{k}}{k+5}\right|=\frac{1}{5} \lim _{k \rightarrow \infty} \frac{k+6}{k+5}=\frac{1}{5}<1$, so the series $\sum_{k=1}^{\infty} \frac{k+5}{5^{k}}$ converges by the Ratio Test.
21. $\sum_{n=1}^{\infty} \frac{(-2)^{2 n}}{n^{n}}=\sum_{n=1}^{\infty}\left(\frac{4}{n}\right)^{n} \cdot \lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{4}{n}=0<1$, so the given series is absolutely convergent by the Root Test.
22. $\frac{\sqrt{n^{2}-1}}{n^{3}+2 n^{2}+5}<\frac{n}{n^{3}+2 n^{2}+5}<\frac{n}{n^{3}}=\frac{1}{n^{2}}$ for $n \geq 1$, so $\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}-1}}{n^{3}+2 n^{2}+5}$ converges by the Comparison Test with the convergent p-series $\sum_{n=1}^{\infty} 1 / n^{2}(p=2>1)$.
23. Using the Limit Comparison Test with $a_{n}=\tan \left(\frac{1}{n}\right)$ and $b_{n}=\frac{1}{n}$, we have $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\tan (1 / n)}{1 / n}=\lim _{x \rightarrow \infty} \frac{\tan (1 / x)}{1 / x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{\sec ^{2}(1 / x) \cdot\left(-1 / x^{2}\right)}{-1 / x^{2}}=\lim _{x \rightarrow \infty} \sec ^{2}(1 / x)=1^{2}=1>0$. Since $\sum_{n=1}^{\infty} b_{n}$ is the divergent harmonic series, $\sum_{n=1}^{\infty} a_{n}$ is also divergent.
24. $\frac{|\cos (n / 2)|}{n^{2}+4 n}<\frac{1}{n^{2}+4 n}<\frac{1}{n^{2}}$ and since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges $(p=2>1), \sum_{n=1}^{\infty} \frac{\cos (n / 2)}{n^{2}+4 n}$ converges absolutely by the Comparison Test.
25. Use the Ratio Test. $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{e^{(n+1)^{2}}} \cdot \frac{e^{n^{2}}}{n!}\right|=\lim _{n \rightarrow \infty} \frac{(n+1) n!\cdot e^{n^{2}}}{e^{n^{2}+2 n+1} n!}=\lim _{n \rightarrow \infty} \frac{n+1}{e^{2 n+1}}=0<1$, so $\sum_{n=1}^{\infty} \frac{n!}{e^{n^{2}}}$ converges.
26. $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty}\left(\frac{n^{2}+2 n+2}{5^{n+1}} \cdot \frac{5^{n}}{n^{2}+1}\right)=\lim _{n \rightarrow \infty}\left(\frac{1+2 / n+2 / n^{2}}{1+1 / n^{2}} \cdot \frac{1}{5}\right)=\frac{1}{5}<1$, so $\sum_{n=1}^{\infty} \frac{n^{2}+1}{5^{n}}$ converges by the Ratio Test.
27. $\int_{2}^{\infty} \frac{\ln x}{x^{2}} d x=\lim _{t \rightarrow \infty}\left[-\frac{\ln x}{x}-\frac{1}{x}\right]_{1}^{t}$ (using integration by parts) $\stackrel{\mathrm{H}}{=}$ 1. So $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$ converges by the Integral Test, and since $\frac{k \ln k}{(k+1)^{3}}<\frac{k \ln k}{k^{3}}=\frac{\ln k}{k^{2}}$, the given series $\sum_{k=1}^{\infty} \frac{k \ln k}{(k+1)^{3}}$ converges by the Comparison Test.
28. Since $\left\{\frac{1}{n}\right\}$ is a decreasing sequence, $e^{1 / n} \leq e^{1 / 1}=e$ for all $n \geq 1$, and $\sum_{n=1}^{\infty} \frac{e}{n^{2}}$ converges ($p=2>1$), so $\sum_{n=1}^{\infty} \frac{e^{1 / n}}{n^{2}}$ converges by the Comparison Test. (Or use the Integral Test.)
29. $0<\frac{\tan ^{-1} n}{n^{3 / 2}}<\frac{\pi / 2}{n^{3 / 2}} \cdot \sum_{n=1}^{\infty} \frac{\pi / 2}{n^{3 / 2}}=\frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ which is a convergent p-series $\left(p=\frac{3}{2}>1\right.$), so $\sum_{n=1}^{\infty} \frac{\tan ^{-1} n}{n^{3 / 2}}$ converges by the Comparison Test.
30. Let $f(x)=\frac{\sqrt{x}}{x+5}$. Then $f(x)$ is continuous and positive on $[1, \infty)$, and since $f^{\prime}(x)=\frac{5-x}{2 \sqrt{x}(x+5)^{2}}<0$ for
$x>5, f(x)$ is eventually decreasing, so we can use the Alternating Series Test.
$\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{n+5}=\lim _{n \rightarrow \infty} \frac{1}{n^{1 / 2}+5 n^{-1 / 2}}=0$, so the series $\sum_{j=1}^{\infty}(-1)^{j} \frac{\sqrt{j}}{j+5}$ converges.
31. $\lim _{k \rightarrow \infty} a_{k}=\lim _{k \rightarrow \infty} \frac{5^{k}}{3^{k}+4^{k}}=\left[\right.$ divide by $\left.4^{k}\right] \lim _{k \rightarrow \infty} \frac{(5 / 4)^{k}}{(3 / 4)^{k}+1}=\infty$ since $\lim _{k \rightarrow \infty}\left(\frac{3}{4}\right)^{k}=0$ and $\lim _{k \rightarrow \infty}\left(\frac{5}{4}\right)^{k}=\infty$. Thus, $\sum_{k=1}^{\infty} \frac{5^{k}}{3^{k}+4^{k}}$ diverges by the Test for Divergence.
32. $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{2 n}{n^{2}}=\lim _{n \rightarrow \infty} \frac{2}{n}=0$, so the series $\sum_{n=1}^{\infty} \frac{(2 n)^{n}}{n^{2 n}}$ converges by the Root Test.
33. Let $a_{n}=\frac{\sin (1 / n)}{\sqrt{n}}$ and $b_{n}=\frac{1}{n \sqrt{n}}$. Then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\sin (1 / n)}{1 / n}=1>0$, so $\sum_{n=1}^{\infty} \frac{\sin (1 / n)}{\sqrt{n}}$ converges by limit comparison with the convergent p-series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}(p=3 / 2>1)$.
34. $0 \leq n \cos ^{2} n \leq n$, so $\frac{1}{n+n \cos ^{2} n} \geq \frac{1}{n+n}=\frac{1}{2 n}$. Thus, $\sum_{n=1}^{\infty} \frac{1}{n+n \cos ^{2} n}$ diverges by comparison with $\sum_{n=1}^{\infty} \frac{1}{2 n}$, which is a constant multiple of the (divergent) harmonic series.
35. $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n^{2} / n}=\lim _{n \rightarrow \infty} \frac{1}{[(n+1) / n]^{n}}=\frac{1}{\lim _{n \rightarrow \infty}(1+1 / n)^{n}}=\frac{1}{e}<1$, so the series $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$ converges by the Root Test.
36. Note that $(\ln n)^{\ln n}=\left(e^{\ln \ln n}\right)^{\ln n}=\left(e^{\ln n}\right)^{\ln \ln n}=n^{\ln \ln n}$ and $\ln \ln n \rightarrow \infty$ as $n \rightarrow \infty$, so $\ln \ln n>2$ for sufficiently large n. For these n we have $(\ln n)^{\ln n}>n^{2}$, so $\frac{1}{(\ln n)^{\ln n}}<\frac{1}{n^{2}}$. Since $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ converges ($p=2>1$), so does $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$ by the Comparison Test.
37. $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left(2^{1 / n}-1\right)=1-1=0<1$, so the series $\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)^{n}$ converges by the Root Test.

