12.5 Alternating Series

1. (a) An alternating series is a series whose terms are alternately positive and negative.
(b) An alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ converges if $0<b_{n+1} \leq b_{n}$ for all n and $\lim _{n \rightarrow \infty} b_{n}=0$. (This is the Alternating Series Test.)
(c) The error involved in using the partial sum s_{n} as an approximation to the total sum s is the remainder $R_{n}=s-s_{n}$ and the size of the error is smaller than b_{n+1}; that is, $\left|R_{n}\right| \leq b_{n+1}$. (This is the Alternating Series Estimation Theorem.)
2. $-\frac{1}{3}+\frac{2}{4}-\frac{3}{5}+\frac{4}{6}-\frac{5}{7}+\cdots=\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+2}$. Here $a_{n}=(-1)^{n} \frac{n}{n+2}$. Since $\lim _{n \rightarrow \infty} a_{n} \neq 0$ (in fact the limit does not exist), the series diverges by the Test for Divergence.
3. $\frac{4}{7}-\frac{4}{8}+\frac{4}{9}-\frac{4}{10}+\frac{4}{11}-\cdots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{4}{n+6}$. Now $b_{n}=\frac{4}{n+6}>0,\left\{b_{n}\right\}$ is decreasing, and
$\lim _{n \rightarrow \infty} b_{n}=0$, so the series converges by the Alternating Series Test.
4. $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{\ln n}$. $b_{n}=\frac{1}{\ln n}$ is positive and $\left\{b_{n}\right\}$ is decreasing; $\lim _{n \rightarrow \infty} \frac{1}{\ln n}=0$, so the series converges by the Alternating Series Test.
5. $b_{n}=\frac{1}{\sqrt{n}}>0,\left\{b_{n}\right\}$ is decreasing, and $\lim _{n \rightarrow \infty} b_{n}=0$, so the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ converges by the Alternating Series Test.
6. $b_{n}=\frac{1}{3 n-1}>0,\left\{b_{n}\right\}$ is decreasing, and $\lim _{n \rightarrow \infty} b_{n}=0$, so the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3 n-1}$ converges by the Alternating Series Test.
7. $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}(-1)^{n} \frac{3 n-1}{2 n+1}=\sum_{n=1}^{\infty}(-1)^{n} b_{n}$. Now $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{3-1 / n}{2+1 / n}=\frac{3}{2} \neq 0$. Since $\lim _{n \rightarrow \infty} a_{n} \neq 0$ (in fact the limit does not exist), the series diverges by the Test for Divergence.
8. $b_{n}=\frac{2 n}{4 n^{2}+1}>0,\left\{b_{n}\right\}$ is decreasing [since
$b_{n}-b_{n+1}=\frac{2 n}{4 n^{2}+1}-\frac{2 n+2}{4 n^{2}+8 n+5}=\frac{8 n^{2}+8 n-2}{\left(4 n^{2}+1\right)\left(4 n^{2}+8 n+5\right)}>0$ for $n \geq 1$], and $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{2 / n}{4+1 / n^{2}}=0$, so the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{2 n}{4 n^{2}+1}$ converges by the Alternating Series Test.

Alternatively, to show that $\left\{b_{n}\right\}$ is decreasing, we could verify that $\frac{d}{d x}\left(\frac{2 x}{4 x^{2}+1}\right)<0$ for $x \geq 1$.
9. $b_{n}=\frac{1}{4 n^{2}+1}>0,\left\{b_{n}\right\}$ is decreasing, and $\lim _{n \rightarrow \infty} b_{n}=0$, so the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{4 n^{2}+1}$ converges by the Alternating Series Test.
10. $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}$
(in fact the lim
11. $b_{n}=\frac{n^{2}}{n^{3}+4}$
$\left(\frac{x^{2}}{x^{3}+4}\right)^{\prime}=$
$\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow}$
12. $b_{n}=\frac{e^{1 / n}}{n}>$
$\left(\frac{e^{1 / x}}{x}\right)^{\prime} \equiv \frac{x}{-}$
$\lim _{n \rightarrow \infty} e^{1 / n}=1$
13. $\sum_{n=2}^{\infty}(-1)^{n} \frac{n}{\ln r}$
14. $\sum_{n=1}^{\infty}(-1)^{n-1}($
then $f^{\prime}(x)=$
$\lim _{n \rightarrow \infty} b_{n}=\operatorname{lin}_{n-}$
15. $\sum_{n=1}^{\infty} \frac{\cos n \pi}{n^{3 / 4}}=$ the Alternating
16. $\sin \left(\frac{n \pi}{2}\right)=\mathrm{C}$ decreasing, an
17. $\sum_{n=1}^{\infty}(-1)^{n} \sin$ converges by t
18. $\sum_{n=1}^{\infty}(-1)^{n} \cos$ the Test for Di
19. $\frac{n^{n}}{n!}=\frac{n \cdot n \text {. }}{1 \cdot 2}$
the Test for D i
10. $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{1+2 \sqrt{n}}=\sum_{n=1}^{\infty}(-1)^{n} b_{n}$. Now $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{2+1 / \sqrt{n}}=\frac{1}{2} \neq 0$. Since $\lim _{n \rightarrow \infty} a_{n} \neq 0$ (in fact the limit does not exist), the series diverges by the Test for Divergence.
:he
11. $b_{n}=\frac{n^{2}}{n^{3}+4}>0$ for $n \geq 1$. $\left\{b_{n}\right\}$ is decreasing for $n \geq 2$ since
$\left(\frac{x^{2}}{x^{3}+4}\right)^{\prime}=\frac{\left(x^{3}+4\right)(2 x)-x^{2}\left(3 x^{2}\right)}{\left(x^{3}+4\right)^{2}}=\frac{x\left(2 x^{3}+8-3 x^{3}\right)}{\left(x^{3}+4\right)^{2}}=\frac{x\left(8-x^{3}\right)}{\left(x^{3}+4\right)^{2}}<0$ for $x>2$. Also, $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1 / n}{1+4 / n^{3}}=0$. Thus, the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{n^{3}+4}$ converges by the Alternating Series Test.
12. $b_{n}=\frac{e^{1 / n}}{n}>0$ for $n \geq 1$. $\left\{b_{n}\right\}$ is decreasing since $\left(\frac{e^{1 / x}}{x}\right)^{\prime}=\frac{x \cdot e^{1 / x}\left(-1 / x^{2}\right)-e^{1 / x} \cdot 1}{x^{2}}=\frac{-e^{1 / x}(1+x)}{x^{3}}<0$ for $x>0$. Also, $\lim _{n \rightarrow \infty} b_{n}=0$ since $\lim _{n \rightarrow \infty} e^{1 / n}=1$. Thus, the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{e^{1 / n}}{n}$ converges by the Alternating Series Test.
13. $\sum_{n=2}^{\infty}(-1)^{n} \frac{n}{\ln n} \cdot \lim _{n \rightarrow \infty} \frac{n}{\ln n}=\lim _{x \rightarrow \infty} \frac{x}{\ln x} \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{1}{1 / x}=\infty$, so the series diverges by the Test for Divergence.
14. $\sum_{n=1}^{\infty}(-1)^{n-1}\left(\frac{\ln n}{n}\right)=0+\sum_{n=2}^{\infty}(-1)^{n-1}\left(\frac{\ln n}{n}\right) \cdot b_{n}=\frac{\ln n}{n}>0$ for $n \geq 2$, and if $f(x)=\frac{\ln x}{x}$, then $f^{\prime}(x)=\frac{1-\ln x}{x^{2}}<0$ for $x>e$, so $\left\{b_{n}\right\}$ is eventually decreasing. Also, $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{\ln n}{n}=\lim _{x \rightarrow \infty} \frac{\ln x}{x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{1 / x}{1}=0$, so the series converges by the Alternating Series Test.
15. $\sum_{n=1}^{\infty} \frac{\cos n \pi}{n^{3 / 4}} \equiv \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3 / 4}} . b_{n}=\frac{1}{n^{3 / 4}}$ is decreasing and positive and $\lim _{n \rightarrow \infty} \frac{1}{n^{3 / 4}}=0$, so the series converges by the Alternating Series Test.
16. $\sin \left(\frac{n \pi}{2}\right)=0$ if n is even and $(-1)^{k}$ if $n=2 k+1$, so the series is $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} . b_{n}=\frac{1}{(2 n+1)!}>0,\left\{b_{n}\right\}$ is decreasing, and $\lim _{n \rightarrow \infty} \frac{1}{(2 n+1)!}=0$, so the series converges by the Alternating Series Test.
17. $\sum_{n=1}^{\infty}(-1)^{n} \sin \frac{\pi}{n} . b_{n}=\sin \frac{\pi}{n}>0$ for $n \geq 2$ and $\sin \frac{\pi}{n} \geq \sin \frac{\pi}{n+1}$, and $\lim _{n \rightarrow \infty} \sin \frac{\pi}{n}=\sin 0=0$, so the series converges by the Alternating Series Test.
18. $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(\frac{\pi}{n}\right) \cdot \lim _{n \rightarrow \infty} \cos \left(\frac{\pi}{n}\right)=\cos (0)=1$, so $\lim _{n \rightarrow \infty}(-1)^{n} \cos \left(\frac{\pi}{n}\right)$ does not exist and the series diverges by the Test for Divergence.
19. $\frac{n^{n}}{n!}=\frac{n \cdot n \cdots \cdot n}{1 \cdot 2 \cdots \cdots n} \geq n \Rightarrow \lim _{n \rightarrow \infty} \frac{n^{n}}{n!}=\infty \Rightarrow \lim _{n \rightarrow \infty} \frac{(-1)^{n} n^{n}}{n!}$ does not exist. So the series diverges by the Test for Divergence.

952 CHAPTER 12 INFINITE SEQUENCES AND SERIES
20. $\sum_{n=1}^{\infty}\left(-\frac{n}{5}\right)^{n}$ diverges by the Test for Divergence since $\lim _{n \rightarrow \infty}\left(\frac{n}{5}\right)^{n}=\infty \Rightarrow \lim _{n \rightarrow \infty}\left(-\frac{n}{5}\right)^{n}$ does not exist.
21.

n	a_{n}	s_{n}
1	1	1
2	-0.35355	0.64645
3	0.19245	0.83890
4	-0.125	0.71390
5	0.08944	0.80334
6	-0.06804	0.73530
7	0.05399	0.78929
8	-0.04419	0.74510
9	0.03704	0.78214
10	-0.03162	0.75051

22.

n	a_{n}	s_{n}
1	1	1
2	-0.125	0.875
3	0.03704	0.91204
4	-0.01563	0.89641
5	0.008	0.90441
6	-0.00463	0.89978
7	0.00292	0.90270
8	-0.00195	0.90074
9	0.00137	0.90212
10	-0.001	0.90112

By the Alternating Series Estimation Theorem, the error in the

$$
\text { approximation } \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{3 / 2}} \approx 0.75051 \text { is }
$$

$\left|s-s_{10}\right| \leq b_{11}=1 /(11)^{3 / 2} \approx 0.0275$ (to four decimal places, rounded up).

By the Alternating Series Estimation Theorem, the error in the approximation $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{3}} \approx 0.90112$ is $\left|s-s_{10}\right| \leq b_{11}=1 / 11^{3} \approx 0.0007513$.
23. The series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{2}}$ satisfies (i) of the Alternating Series Test because $\frac{1}{(n+1)^{2}}<\frac{1}{n^{2}}$ and
(ii) $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$, so the series is convergent. Now $b_{10}=\frac{1}{10^{2}}=0.01$ and $b_{11}=\frac{1}{11^{2}}=\frac{1}{121} \approx 0.008<0.01$, so by the Alternating Series Estimation Theorem, $n=10$. (That is, since the 11th term is less than the desired error, we need to add the first 10 terms to get the sum to the desired accuracy.)
24. The series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{4}}$ satisfies (i) of the Alternating Series Test because $\frac{1}{(n+1)^{4}}<\frac{1}{n^{4}}$ and (ii) $\lim _{n \rightarrow \infty} \frac{1}{n^{4}}=0$, so the series is convergent. Now $b_{5}=1 / 5^{4}=0.0016>0.001$ and $b_{6}=1 / 6^{4} \approx 0.00077<0.001$, so by the Alternating Series Estimation Theorem, $n=5$.
25. The series $\sum_{n=1}^{\infty}$
because b_{n+1}
$\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}=\frac{2}{n}$
$b_{8}=2^{8} / 8!\approx$ is less than the
26. The series $\sum_{n=1}^{\infty}$ $b_{n+1}=\frac{n+1}{4^{n+1}}$ $b_{5}=5 / 4^{5} \approx 1$ Theorem, $n=$
27. $b_{7}=\frac{1}{7^{5}}=\frac{-}{1}$ $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{5}}$ not change the
28. $b_{6}=\frac{6}{8^{6}}=\frac{}{2}$ $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{8^{n}}=$ change the fou
29. $b_{7}=\frac{7^{2}}{10^{7}}=1$ $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} r}{10^{n}}$ Adding b_{7} to s places, is 0.06 :
30. $b_{6}=\frac{1}{3^{6} \cdot 6!}=$ $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3^{n} n!} \approx$ change the fous

