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12.5 Alternating Series

1. (a) An alternating series is a series whose terms are alternately positive and negative.
(b) An alternating series 3 0. (—=1)""bn converges if 0 < bn+1 < b, forallnand lim b, = 0. (This is the
Alternating Series Test.)

(c) The error involved in using the partial sum s, as an approximation to the total sum s is the remainder
R, = s — 3n, and the size of the error is smaller than by, ,1; that is, | Ry| < bn41. (This is the Alternating Series
Estimation Theorem.)
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2n

8b,=—
4n? +1

> 0, {bn} is decreasing [since

2n 42 8n® +8n — 2
4n?2+1 4n?2+8n+5 (4n?+1)(4n2+8n+5)

bp — bpy1 = > 0forn > 1}, and

lim b, = lim _An = 0, so the series Z( Hy”

2n . .
Jm A T 1/ P yrCE) converges by the Alternating Series Test.

Alternatively, to show that {b,} is decreasmg, we could verify that dd ( yo 3':_ 1) < 0Oforz > 1.
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10. Za“ _Z{ 1+2f )_‘ ~1)"bn. Now lim by = lim_ Y ;eo. Since lim an # 0
(in fact the limit does not exist), the series diverges by the Test for Divergence.
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20. Z (——) diverges by the Test for Divergence since lim (—) =00 = lim (—-—) does not exist.
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23. The series ;(-1)" 5 satisfies (i) of the Alternating Series Test because [CFS)D <3 and
(ii) lim 1 = 0, so the series is convergent. Now bjg = L =0.01 and by; = L = L 2 0.008 < 0.01, so
n—so0 N2 ’ 102 112 121

by the Alternating Series Estimation Theorem, n = 10. (That is, since the 11th term is less than the desired error,

we need to add the first 10 terms to get the sum to the desired accuracy.)

24. The series Z( —1)™*t % satisfies (i) of the Alternating Series Test because 1 _ 1
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(i) lim = 0, so the series is convergent. Now b5 = 1/5% = 0.0016 > 0.001 and

be = 1/6* ~ 0.00077 < 0.001, 50 by the Aliernating Series Estimation Theorem, n = 5.
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