938 O CHAPTER12 INFINITE SEQUENCES AND SERIES

123 The Integral Test and Estimates of Sums
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integral converges by (8.8.2) with p = 1.3 > 1, so the series converges.
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3. The function f(z) = 1/z* is continuous, positive, and decreasing on [1, cc), so the Integral Test applies.
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convergent. the series 2 et is also «convergentby the Integral Test.
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4. The function f(z) = 1/ 4z = z~/* is continuous, positive, and decreasing on [1, 00), so the Integral Test applies.
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8. The function f(z) = 1/(3z + 1) is continuous, positive, and decreasing on [1, 00}, so the Integral Test applies.
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so the improper integral diverges, and so does the series } o ; 1/(3n +1).
6. The function f(z) = e~ is continuous, positive, and decreasing on {1, c0), so the Integral Test applies.

0 - g 1 b ez g3 —-z1b _ . —b -1y _ -1 - .
e ®dr = b{%fl e % de = bllnolo [~e ], = Jim (—e®+e ) =€, 50322, e converges. Note:
This is a geometric series, with first term a = e~* and ratio » = e~ 1. Since |r| < 1, the series converges to
el/l-e)=1/(e—1).

1. f(x) = ze™" is continuous and positive on [1,00). f'(z) = —ze > + e =e *(1 —z) < Oforz > 1,50 f is
decreasing on [1, 00). Thus, the Integral Test applies.
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since bli‘i‘o be b = blggo (b/e*) = bll»n;o (1/€®) =0 and bl_ldrgoe ® = 0. Thus, 3.2 | ne™™ converges.
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diverges by the
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8. The function f(z) = ii i) 14 i 1s continuous, positive, and decreasing on [1, 0c), so the

Integral Test applies.
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diverges by the Test for Divergence.
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9. The series Z —0.85 1S ap-series with p = 0.85 < 1, so it diverges by (1). Therefore, the series Z 085 must
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also diverge, for if it converged, then Z ;;al-_g would have to converge (by Theorem 8(i) in Section 11.2).
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10. E n~'* and Z n~ 2 are p—‘;encs with p > 1, so they converge by (1). Thus, Z 3n 12 converges by Theorem
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8(i) in Section 11.2. It follows from Theorem 8(ii) that the given series Z(m_l'4 + Sn_l'z) also converges.
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converges by (1 }.

. Z 5— 2\/— g Z n; Z nsﬁ by Theorem 12.2.8, since Z, = and z ——; both converge by (1)
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(withp=3 > landp= 2 > 1). Thus, }_ LY_EEE/E converges.
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5 1s continuous, positive, and decreasing on [3, co), so we can apply the Integral Test.
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diverges.

15. The function f(z) = 1 is continuous, positive, and decreasing on [1, o), so we can apply the Integral Test.
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Therefore, the series E ———— converges.
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;Z i i) = % + p _1'_ 1 [by partial fractions] is continuous, positive, and decreasing on

[1, 00) since it is the sum of two such functions. Thus, we can apply the Integral Test. -

16. The function f(z) =
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Thus, the series Z n(n + 1) diverges.

1. f(z) = ;2—::—1 is continuous and positive on [1, 00), and since
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fl(z) = (—1;—'_%5 < Oforz > 1, f is also decreasing. Using the Integral Test,
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18. The function f(z) 7 4s¥5 - @-2FF1 1s continuous, positive, and decreasing on 2, 00), so the
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tl_lq)lﬁlo tan ™ (t—2)—tan ' 0] = — -0 = 2 , S0 the series E ~4n 3§ converges. Of course this means

that Z ;2——1? converges t0o.
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19. f(z) = ze~=" is continuous and positive on [1,00), and since f'(z) = e~ (1 —22%) < 0for
z > 1, f is decreasing as well. Thus, we can use the Integral Test.
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= ze™® dz = lim [ ’2] = 0 — (—3e™") = 1/(2e). Since the integral converges, the seriés converges.
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2. f(z) = 1;2 is continuous and positive for ¢ > 2, and f'(x) = _2_111_:5 < Oforz > 2, so f is decreasing.
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[ IS continuous and positive on (2, c0), and also decreasing since f'(z) = _lthez < 0forz > 2

p dr = tlim [In(ln m)]; = tlim (n(Int) — In(ln 2)] = o0, so the series
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forp > 1.



