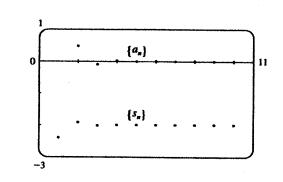
12.2 Series

3

- 1. (a) A sequence is an ordered list of numbers whereas a series is the sum of a list of numbers.
 - (b) A series is convergent if the sequence of partial sums is a convergent sequence. A series is divergent if it is not convergent.
- 2. $\sum_{n=1}^{\infty} a_n = 5$ means that by adding sufficiently many terms of the series we can get as close as we like to the

number 5. In other words, it means that $\lim_{n\to\infty} s_n = 5$, where s_n is the *n*th partial sum, that is, $\sum_{i=1}^n a_i$.

n s_n 1 -2.400002 -1.920003 -2.01600-1.996804 -2.000645 6 -1.999877 -2.000038 -1.999999 -2.0000010 -2.00000



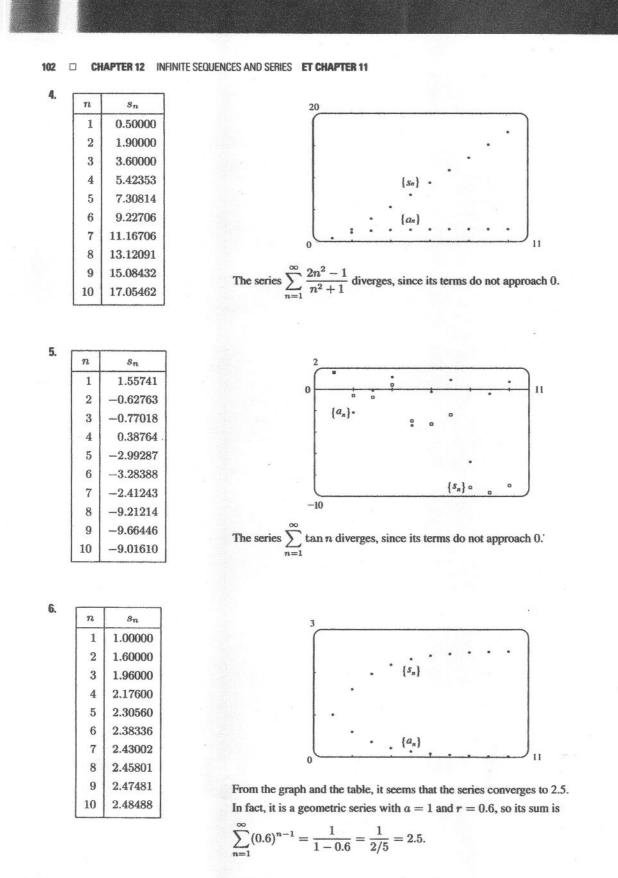
From the graph and the table, it seems that the series converges to -2. In fact, it

is a geometric series with a = -2.4 and $r = -\frac{1}{5}$, so its sum is

$$\sum_{n=1}^{\infty} \frac{12}{(-5)^n} = \frac{-2.4}{1 - (-\frac{1}{5})} = \frac{-2.4}{1.2} = -2.$$
 Note that the dot corresponding to

n = 1 is part of both $\{a_n\}$ and $\{s_n\}$.

TI-86 Note: To graph $\{a_n\}$ and $\{s_n\}$, set your calculator to Param mode and DrawDot mode. (DrawDot is under GRAPH, MORE, FORMT (F3).) Now under E(t) = make the assignments: xtl=t, $ytl=12/(-5)^t$, xt2=t, yt2=sum seq(yt1,t,1,t,1). (sum and seq are under LIST, OPS (F5), MORE.) Under WIND use 1, 10, 1, 0, 10, 1, -3, 1, 1 to obtain a graph similar to the one above. Then use TRACE (F4) to see the values.



7.

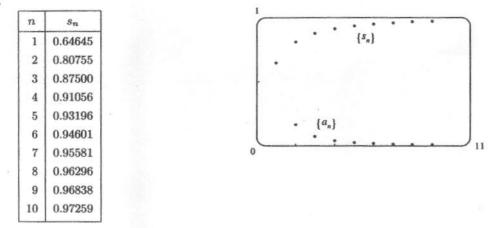
Fı

Si

S

8.

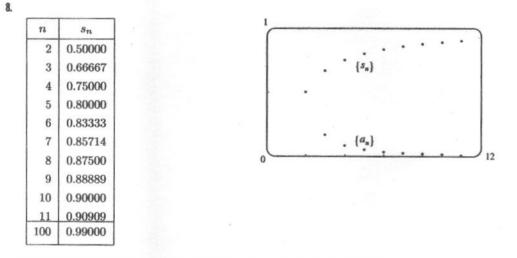
2



From the graph, it seems that the series converges to 1. To find the sum, we write

$$s_n = \sum_{i=1}^n \left(\frac{1}{i^{1.5}} - \frac{1}{(i+1)^{1.5}} \right)$$
$$= \left(1 - \frac{1}{2^{1.5}} \right) + \left(\frac{1}{2^{1.5}} - \frac{1}{3^{1.5}} \right) + \left(\frac{1}{3^{1.5}} - \frac{1}{4^{1.5}} \right) + \dots + \left(\frac{1}{n^{1.5}} - \frac{1}{(n+1)^{1.5}} \right) = 1 - \frac{1}{(n+1)^{1.5}}$$

So the sum is $\lim_{n\to\infty} s_n = 1 - 0 = 1$.



From the graph and the table, it seems that the series converges to 1. To find the sum, we write

$$s_n = \sum_{i=2}^n \frac{1}{i(i-1)} = \sum_{i=2}^n \left(\frac{1}{i-1} - \frac{1}{i}\right) \quad \text{[partial fractions]}$$
$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) = 1 - \frac{1}{n}$$

and so the sum is $\lim_{n \to \infty} s_n = 1 - 0 = 1$.

7.

104 CHAPTER 12 INFINITE SEQUENCES AND SERIES ET CHAPTER 11

9. (a) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n}{3n+1} = \frac{2}{3}$, so the sequence $\{a_n\}$ is convergent by (12.1.1) [ET (11.1.1)].

(b) Since $\lim_{n \to \infty} a_n = \frac{2}{3} \neq 0$, the series $\sum_{n=1}^{\infty} a_n$ is divergent by the Test for Divergence (7).

10. (a) Both $\sum_{i=1}^{n} a_i$ and $\sum_{j=1}^{n} a_j$ represent the sum of the first *n* terms of the sequence $\{a_n\}$, that is, the *n*th partial sum.

(b)
$$\sum_{i=1}^{n} a_j = \underbrace{a_j + a_j + \dots + a_j}_{n \text{ terms}} = na_j$$
, which, in general, is not the same as $\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n$.

- 11. $3 + 2 + \frac{4}{3} + \frac{8}{9} + \cdots$ is a geometric series with first term a = 3 and common ratio $r = \frac{2}{3}$. Since $|r| = \frac{2}{3} < 1$, the series converges to $\frac{a}{1-r} = \frac{3}{1-2/3} = \frac{3}{1/3} = 9$.
- 12. $\frac{1}{8} \frac{1}{4} + \frac{1}{2} 1 + \cdots$ is a geometric series with r = -2. Since |r| = 2 > 1, the series diverges.
- 13. $-2 + \frac{5}{2} \frac{25}{8} + \frac{125}{32} \cdots$ is a geometric series with a = -2 and $r = \frac{5/2}{-2} = -\frac{5}{4}$. Since $|r| = \frac{5}{4} > 1$, the series diverges by (4).
- 14. $1 + 0.4 + 0.16 + 0.064 + \cdots$ is a geometric series with ratio 0.4. The series converges to $\frac{a}{1-r} = \frac{1}{1-2/5} = \frac{5}{3}$ since $|r| = \frac{2}{5} < 1$.
- 15. $\sum_{n=1}^{\infty} 5\left(\frac{2}{3}\right)^{n-1}$ is a geometric series with a = 5 and $r = \frac{2}{3}$. Since $|r| = \frac{2}{3} < 1$, the series converges to $\frac{a}{1-r} = \frac{5}{1-\frac{2}{3}} = \frac{5}{1/3} = 15.$
- 16. $\sum_{n=1}^{\infty} \frac{(-6)^{n-1}}{5^{n-1}}$ is a geometric series with a = 1 and $r = -\frac{6}{5}$. The series diverges since $|r| = \frac{6}{5} > 1$.
- 17. $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n} = \frac{1}{4} \sum_{n=1}^{\infty} \left(-\frac{3}{4}\right)^{n-1}$. The latter series is geometric with a = 1 and $r = -\frac{3}{4}$. Since $|r| = \frac{3}{4} < 1$, it converges to $\frac{1}{1-(-3/4)} = \frac{4}{7}$. Thus, the given series converges to $\left(\frac{1}{4}\right)\left(\frac{4}{7}\right) = \frac{1}{7}$.
- **18.** $\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2})^n}$ is a geometric series with ratio $r = \frac{1}{\sqrt{2}}$. Since $|r| = \frac{1}{\sqrt{2}} < 1$, the series converges. Its sum is $\frac{1}{1-1/\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}-1} = \frac{\sqrt{2}}{\sqrt{2}-1} \cdot \frac{\sqrt{2}+1}{\sqrt{2}+1} = \sqrt{2}(\sqrt{2}+1) = 2 + \sqrt{2}.$
- 19. $\sum_{n=0}^{\infty} \frac{\pi^n}{3^{n+1}} = \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{\pi}{3}\right)^n$ is a geometric series with ratio $r = \frac{\pi}{3}$. Since |r| > 1, the series diverges.
- 20. $\sum_{n=1}^{\infty} \frac{e^n}{3^{n-1}} = 3 \sum_{n=1}^{\infty} \left(\frac{e}{3}\right)^n$ is a geometric series with first term 3(e/3) = e and ratio $r = \frac{e}{3}$. Since |r| < 1, the series converges. Its sum is $\frac{e}{1 e/3} = \frac{3e}{3 e}$.

21. $\sum_{n=1}^{\infty} \frac{n}{n+5}$ diverges since $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{n+5} = 1 \neq 0$. [Use (7), the Test for Divergence.]

2

2

2

2

2

2

2

2

22. $\sum_{n=1}^{\infty} \frac{3}{n} = 3 \sum_{n=1}^{\infty} \frac{1}{n}$ diverges since each of its partial sums is 3 times the corresponding partial sum of the harmonic

series $\sum_{n=1}^{\infty} \frac{1}{n}$, which diverges. [If $\sum_{n=1}^{\infty} \frac{3}{n}$ were to converge, then $\sum_{n=1}^{\infty} \frac{1}{n}$ would also have to converge by

Theorem 8(i).] In general, constant multiples of divergent series are divergent.

23. Using partial fractions, the partial sums are

$$s_n = \sum_{i=2}^n \frac{2}{(i-1)(i+1)} = \sum_{i=2}^n \left(\frac{1}{i-1} - \frac{1}{i+1}\right)$$
$$= \left(1 - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \dots + \left(\frac{1}{n-3} - \frac{1}{n-1}\right) + \left(\frac{1}{n-2} - \frac{1}{n}\right)$$

This sum is a telescoping series and $s_n = 1 + \frac{1}{2} - \frac{1}{n-1} - \frac{1}{n}$.

Thus,
$$\sum_{n=2}^{\infty} \frac{2}{n^2 - 1} = \lim_{n \to \infty} \left(1 + \frac{1}{2} - \frac{1}{n - 1} - \frac{1}{n} \right) = \frac{3}{2}.$$

24. $\sum_{n=1}^{\infty} \frac{(n+1)^2}{n(n+2)}$ diverges by (7), the Test for Divergence, since

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^2 + 2n} = \lim_{n \to \infty} \left(1 + \frac{1}{n^2 + 2n} \right) = 1 \neq 0$$

25. $\sum_{k=2}^{\infty} \frac{k^2}{k^2 - 1}$ diverges by the Test for Divergence since $\lim_{k \to \infty} a_k = \lim_{k \to \infty} \frac{k^2}{k^2 - 1} = 1 \neq 0.$

- **26.** Converges. $s_n = \sum_{i=1}^n \frac{2}{i^2 + 4i + 3} = \sum_{i=1}^n \left(\frac{1}{i+1} \frac{1}{i+3}\right)$ (using partial fractions). The latter sum is
 - $\left(\frac{1}{2} \frac{1}{4}\right) + \left(\frac{1}{3} \frac{1}{5}\right) + \left(\frac{1}{4} \frac{1}{6}\right) + \left(\frac{1}{5} \frac{1}{7}\right) + \dots + \left(\frac{1}{n} \frac{1}{n+2}\right) + \left(\frac{1}{n+1} \frac{1}{n+3}\right) = \frac{1}{2} + \frac{1}{3} \frac{1}{n+2} \frac{1}{n+3}$

(telescoping series). Thus, $\sum_{n=1}^{\infty} \frac{2}{n^2 + 4n + 3} = \lim_{n \to \infty} \left(\frac{1}{2} + \frac{1}{3} - \frac{1}{n+2} - \frac{1}{n+3} \right) = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}.$

27. Converges.
$$\sum_{n=1}^{\infty} \frac{3^n + 2^n}{6^n} = \sum_{n=1}^{\infty} \left(\frac{3^n}{6^n} + \frac{2^n}{6^n} \right) = \sum_{n=1}^{\infty} \left[\left(\frac{1}{2} \right)^n + \left(\frac{1}{3} \right)^n \right] = \frac{1/2}{1 - 1/2} + \frac{1/3}{1 - 1/3} = 1 + \frac{1}{2} = \frac{3}{2}$$

- 28. $\sum_{n=1}^{\infty} \left[(0.8)^{n-1} (0.3)^n \right] = \sum_{n=1}^{\infty} (0.8)^{n-1} \sum_{n=1}^{\infty} (0.3)^n \text{ [difference of two convergent geometric series]}$ $= \frac{1}{1-0.8} \frac{0.3}{1-0.3} = 5 \frac{3}{7} = \frac{32}{7}.$
- 29. $\sum_{n=1}^{\infty} \sqrt[n]{2} = 2 + \sqrt{2} + \sqrt[3]{2} + \sqrt[4]{2} + \cdots$ diverges by the Test for Divergence since $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt[n]{2} = \lim_{n \to \infty} 2^{1/n} = 2^0 = 1 \neq 0.$

106 CHAPTER 12 INFINITE SEQUENCES AND SERIES ET CHAPTER 11

30. $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \ln\left(\frac{n}{2n+5}\right) = \lim_{n \to \infty} \ln\left(\frac{1}{2+5/n}\right) = \ln \frac{1}{2} \neq 0$, so the series diverges by the Test for Divergence.

Divergence.

- 31. $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \arctan n = \frac{\pi}{2} \neq 0$, so the series diverges by the Test for Divergence.
- 32. $\sum_{k=1}^{\infty} (\cos 1)^k$ is a geometric series with ratio $r = \cos 1 \approx 0.540302$. It converges because |r| < 1. Its sum is $\cos 1$

 $\frac{\cos 1}{1 - \cos 1} \approx 1.175343.$

33. The first series is a telescoping sum:

$$\sum_{n=1}^{\infty} \frac{3}{n(n+3)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+3}\right) = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} + \frac{1}{n+1} - \frac{1}{n+2} + \frac{1}{n+2} - \frac{1}{n+3}\right)$$
$$= \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) + \sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \sum_{n=1}^{\infty} \left(\frac{1}{n+2} - \frac{1}{n+3}\right)$$
$$= 1 + \frac{1}{2} + \frac{1}{3} = \frac{11}{6}$$

The second series is geometric with first term $\frac{5}{4}$ and ratio $\frac{1}{4}$: $\sum_{n=1}^{\infty} \frac{5}{4^n} = \frac{5/4}{1-1/4} = \frac{5}{3}$. Thus,

$$\sum_{n=1}^{\infty} \left(\frac{3}{n(n+3)} + \frac{5}{4^n} \right) = \sum_{n=1}^{\infty} \frac{3}{n(n+3)} + \sum_{n=1}^{\infty} \frac{5}{4^n} \text{ [sum of two convergent series]} = \frac{11}{6} + \frac{5}{3} = \frac{7}{2}.$$

34.
$$\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n}\right) \text{ diverges because } \sum_{n=1}^{\infty} \frac{2}{n} = 2 \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges. (If it converged, then } \frac{1}{2} \cdot 2 \sum_{n=1}^{\infty} \frac{1}{n} \text{ would also } \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges.}$$

converge by Theorem 8(i), but we know from Example 7 that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.) If the given

series converges, then the difference $\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n}\right) - \sum_{n=1}^{\infty} \frac{3}{5^n}$ must converge (since $\sum_{n=1}^{\infty} \frac{3}{5^n}$ is a convergent

geometric series) and equal $\sum_{n=1}^{\infty} \frac{2}{n}$, but we have just seen that $\sum_{n=1}^{\infty} \frac{2}{n}$ diverges, so the given series must also diverge.

35.
$$0.\overline{2} = \frac{2}{10} + \frac{2}{10^2} + \cdots$$
 is a geometric series with $a = \frac{2}{10}$ and $r = \frac{1}{10}$. It converges to $\frac{a}{1-r} = \frac{2/10}{1-1/10} = \frac{2}{9}$.

36.
$$0.\overline{73} = \frac{73}{10^2} + \frac{73}{10^4} + \dots = \frac{73/10^2}{1 - 1/10^2} = \frac{73/100}{99/100} = \frac{73}{99}$$

37.
$$3.\overline{417} = 3 + \frac{417}{10^3} + \frac{417}{10^6} + \dots = 3 + \frac{417/10^3}{1 - 1/10^3} = 3 + \frac{417}{999} = \frac{3414}{999} = \frac{1138}{333}$$

38.
$$6.2\overline{54} = 6.2 + \frac{54}{10^3} + \frac{54}{10^5} + \dots = 6.2 + \frac{54/10^3}{1 - 1/10^2} = \frac{62}{10} + \frac{54}{990} = \frac{6192}{990} = \frac{344}{55}$$

39. 0. 40. 5. **41**. ∑ 12 42. 5 43. 5 4 1 45. 46. F

47. /

1

 $\begin{aligned} 1234\overline{56} &= \frac{123}{1000} + \frac{0.00456}{1 - 0.001} = \frac{123}{1000} + \frac{456}{999,000} = \frac{123,333}{999,000} = \frac{41,111}{333,000} \\ 123,3000 &= \frac{123}{1000} + \frac{6021}{1 - 0.001} = \frac{123}{1000} + \frac{456}{999,000} = \frac{123,333}{999,000} = \frac{41,111}{333,000} \\ 12,50\overline{021} &= 5 + \frac{6021}{10^4} + \frac{6021}{10^8} + \dots = 5 + \frac{6021/10^4}{1 - 1/10^4} = 5 + \frac{6021}{9999} = \frac{56,016}{9999} = \frac{6224}{1111} \\ 12, \sum_{n=1}^{\infty} \frac{x^n}{3^n} &= \sum_{n=1}^{\infty} \left(\frac{x}{3}\right)^n \text{ is a geometric series with } r = \frac{x}{3}, \text{ so the series converges } \Leftrightarrow |r| < 1 \Rightarrow \frac{|x|}{3} < 1 \Rightarrow |x| < 3; \text{ that is, } -3 < x < 3. \text{ In that case, the sum of the series is } \frac{a}{1 - r} = \frac{x/3}{1 - x/3} = \frac{x/3}{1 - x/3} \cdot \frac{3}{3} = \frac{x}{3 - x}. \end{aligned}$ $\begin{aligned} 12, \sum_{n=1}^{\infty} (x - 4)^n \text{ is a geometric series with } r = x - 4, \text{ so the series converges } \Leftrightarrow |r| < 1 \Rightarrow |x - 4| < 1 \Rightarrow 3 < x < 5. \text{ In that case, the sum of the series is } \frac{x - 4}{1 - (x - 4)} = \frac{x - 4}{5 - x}. \end{aligned}$ $\begin{aligned} 13, \sum_{n=0}^{\infty} 4^n x^n = \sum_{n=0}^{\infty} (4x)^n \text{ is a geometric series with } r = 4x, \text{ so the series converges } \Leftrightarrow |r| < 1 \Rightarrow |x - 4| < 1 \Rightarrow 4|x| < 1 \Rightarrow |x| < \frac{1}{4}. \text{ In that case, the sum of the series is } \frac{1}{1 - 4x}. \end{aligned}$ $\begin{aligned} 14, \sum_{n=0}^{\infty} \frac{(x + 3)^n}{2^n} \text{ is a geometric series with } r = \frac{x + 3}{2}, \text{ so the series converges } \Leftrightarrow |r| < 1 \Rightarrow \frac{|x + 3|}{2} < 1 \Rightarrow |x + 3| < 2 \Rightarrow -5 < x < -1. \text{ For these values of } x, \text{ the sum of the series is } \frac{1}{1 - (x + 3)/2} = \frac{2}{2 - (x + 3)} = -\frac{2}{x + 1}. \end{aligned}$

- **45.** $\sum_{n=0}^{\infty} \frac{\cos^n x}{2^n}$ is a geometric series with first term 1 and ratio $r = \frac{\cos x}{2}$, so it converges $\Leftrightarrow |r| < 1$. But $|r| = \frac{|\cos x|}{2} \le \frac{1}{2}$ for all x. Thus, the series converges for all real values of x and the sum of the series is $\frac{1}{1 (\cos x)/2} = \frac{2}{2 \cos x}$.
- 46. Because $\frac{1}{n} \to 0$ and \ln is continuous, we have $\lim_{n \to \infty} \ln\left(1 + \frac{1}{n}\right) = \ln 1 = 0$. We now show that the series $\sum_{n=1}^{\infty} \ln\left(1 + \frac{1}{n}\right) = \sum_{n=1}^{\infty} \ln\left(\frac{n+1}{n}\right) = \sum_{n=1}^{\infty} [\ln(n+1) - \ln n] \text{ diverges.}$ $s_n = (\ln 2 - \ln 1) + (\ln 3 - \ln 2) + \dots + (\ln(n+1) - \ln n) = \ln(n+1) - \ln 1 = \ln(n+1). \text{ As } n \to \infty,$ $s_n = \ln(n+1) \to \infty, \text{ so the series diverges.}$
- 47. After defining f, We use convert (f, parfrac); in Maple, Apart in Mathematica, or Expand Rational and Simplify in Derive to find that the general term is $\frac{1}{(4n+1)(4n-3)} = -\frac{1/4}{4n+1} + \frac{1/4}{4n-3}$. So the