SECTION 12.8: Power Series

Introduction:

So far we have only talked about series of constants. For example,
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We asked if such series converge or diverge.
Now, we want to discuss series of functions. For example,
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Now the question we ask is:
For what values of x does the series converge?

Another related question is:
If the series converges for some values of x, what function does 1t converge to; that is,
what s s(x)?

We are only going to discuss very special series of function called power series.

Power Series and Convergence:
A series of the form
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is called a power series centered at x = a. Each partial sum is a polynomial.
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The coefficients are: ¢,= 1,¢; = 2, ¢, = 2, ¢3 = %, c, = %

The centeris: a = -Y.

The infinite power series is a function of x defined for those values of x for which the
series converges. The set of values of x for which the power series converges is called the
interval of convergence or the convergence set.

The interval of convergence,a - r < x < a + r, has a radius of convergence, .




For the power series,
f@) =Y cx-a)r
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we use the Ratio Test to determine the domain of f(x) and thus determines the convergence
set.
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Notice the Ratio Test tells us that
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must be less than 1 for the series to converge. Let
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and consider the following three cases.
CASE 1 (p = 0): If p = 0, then the power series is convergence for all x since
lx -alp=0<1.
The interval of convergence is ~« < x < « or (-, «) and the radius of convergence is r = .
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center: a =0
radius of convergence: r =
convergence set: (—oo, «)

CASE 2 (p = »): If p = «, then the power series converges for x = a only since by the ratio test
the series diverges for all values of x exceptx =a (r =0, x = a).
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for all values of x except a = 2
center: a =2
radius of convergence: r =0
convergence set: x = 2



CASE3 (p#0 or »): If p# 0 and p # «, then by the Ratio Test,
lx -alp
must be less than 1 for the series to converge. The series, not counting endpoints, converges

absolutely for those values of x such that

|lx ~alp <1 or |x—a|<l.

So, 1 is the radius of convergence.
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To determine whether the endpoints are included in the domain (interval of convergence),
a test other than the ratio test must be used. (Recall when |x - a| p = 1 to ratio test fails.)
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Thus, the series converges when
lx + ]2 <1 or |x+ %| <%

Hence,
x + %< -(x + %) < %
x <0 x+ ¥ > -
x> -1
center: a = -%

radius of convergence: r = %

Now before stating the interval of convergence, we need to check the endpoints of the
interval, namely x = -1 and x = 0.
When x = -1, the power series is
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This series diverges by the n' term test since
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When x = 0, the power series is
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Thus, the interval of convergence is

-1<x<0 or (-1, 0),
the radius of convergence is

T =15,
and the center is

a = -,

ADDITIONAL EXAMPLES: Find the interval and radius of convergence of the following power

series.
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