<u>SECTION 12.6</u>: Absolute Convergence and the Ratio and Root Tests

Absolute and Conditional Convergence:

Absolute Convergence Test (ACT): If $\sum |a_n|$ converges, then $\sum a_n$ also converges.

Definitions:

- 1. $\sum_{n=1}^{\infty} a_n$ is <u>absolutely convergent</u> or <u>converges absolutely</u> (CA) if $\sum_{n=1}^{\infty} |a_n|$ converges.
- 2. $\sum_{n=1}^{\infty} a_n$ is <u>conditionally convergent</u> (CC) if $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ diverges.

<u>NOTE</u>: After determining convergence by the Alternating Series Test (AST), then use Integral Test, Comparison Test (CT), or Limit Comparison Test (LCT) on $\sum |a_n|$ to determine absolute convergence (CA) or conditional convergence (CC).

Examples:

1.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{3/2}}$$

3.
$$\sum_{n=1}^{\infty} \frac{\sin n}{n^{3/2}}$$

4.
$$\sum_{n=3}^{\infty} \frac{(-1)^{n-1} \ln n}{n}$$

Ratio Test:

Ratio Test (RT): Let $\sum a_n$ be a series of nonzero terms and suppose

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \rho.$$

- (i) If $\rho < 1$, the series converges absolutely (hence, it converges).
- (ii) If $\rho > 1$, the series diverges.
- (iii) If $\rho = 1$, the test is inconclusive

NOTES:

- 1. For any type of series: positive, alternating, or other.
- 2. If $\rho = 1$, the test fails. You <u>must</u> use a different test.
- 3. If $\rho = +\infty$, the series diverges (ρ does not have to be finite for this test).
- 4. If $\rho = 0$, the series converges (ρ can have a value of 0 in this test).
- 5. This test is most useful with series involving powers and factorials.

<u>Useful Facts for Factorials</u>:

1.
$$2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n) = 2^n n!$$

2. $1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1) = \frac{(2n+1)!}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)} = \frac{(2n+1)!}{2^n n!}$

Examples:

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{n!}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}{4^n}$$

The Root Test:

The Root Test (RoT): Let $\sum_{n=1}^{\infty} a_n$ be a series with nonzero terms and suppose

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \rho.$$

- (i) If $\rho < 1$, the series converges absolutely.
- (ii) If $\rho > 1$, the series diverges.
- (iii) If $\rho = 1$, the test is inconclusive.

NOTES:

- 1. For any type of series: positive, alternating, or other.
- 2. If $\rho = 1$, the test fails. You <u>must</u> use a different test.
- 3. If $\rho = +\infty$, the series diverges (ρ does not have to be finite for this test).
- 4. If $\rho = 0$, the series converges (ρ can have a value of 0 in this test).
- 5. This test is most useful for series involving powers only.
- 6. For series involving both powers and factorials use the Ratio Test (RT).

Example: Use the Root Test to determine if the following series diverges or converges.

$$\sum_{n=1}^{\infty} \left(\frac{n+1}{2n+1}\right)^n$$

<u>Section 12.7</u>: Strategy for Testing Series

- 1. If $\lim_{n \to \infty} a_n \neq 0$, conclude from the n^{th} Term Test that the series diverges.
- 2. If a_n involves n!, or r^n , try the Ratio Test.
- 3. If a_n^n involves n^n , try the Root Test (or possibly the Ratio Test).
- 4. If the series is alternating, then obviously try the Alternating Series Test. (Don't forget to determine absolute or conditional convergence.)
- 5. If a_n is a positive series and involves only constant powers of n, try the Limit Comparison Test. In particular, if a_n is a rational expression in n, use this test with b_n as the quotient of the leading terms from numerator and denominator.
- 6. If the tests above do not work and the series is positive, try the Comparison Test or the Integral Test.
- 7. If all else fails, try some clever manipulation or a neat "trick" to determine convergence or divergence.