SECTION 12.6: Absolute Convergence and the Ratio and Root Tests

Absolute and Conditional Convergence:

Absolute Convergence Test (ACT): If $\sum\left|a_{n}\right|$ converges, then $\sum a_{n}$ also converges.

Definitions:

1. $\sum a_{n}$ is absolutely convergent or converges absolutely (CA) if $\sum\left|a_{n}\right|$ converges.
2. $\quad \sum a_{n}$ is conditionally convergent (CC) if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ diverges.

NOTE: After determining convergence by the Alternating Series Test (AST), then use Integral Test, Comparison Test (CT), or Limit Comparison Test (LCT) on $\sum\left|a_{n}\right|$ to determine absolute convergence (CA) or conditional convergence (CC).

Examples:

1. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}$
2. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3 / 2}}$
3. $\sum_{n=1}^{\infty} \frac{\sin n}{n^{3 / 2}}$
4. $\sum_{n=3}^{\infty} \frac{(-1)^{n-1} \ln n}{n}$

Ratio Test:

Ratio Test (RT): Let $\sum a_{n}$ be a series of nonzero terms and suppose

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\rho
$$

(i) If $\rho<1$, the series converges absolutely (hence, it converges).
(ii) If $\rho>1$, the series diverges.
(iii) If $\rho=1$, the test is inconclusive

NOTES:

1. For any type of series: positive, alternating, or other.
2. If $\rho=1$, the test fails. You must use a different test.
3. If $\rho=+\infty$, the series diverges (ρ does not have to be finite for this test).
4. If $\rho=0$, the series converges (ρ can have a value of 0 in this test).
5. This test is most useful with series involving powers and factorials.

Useful Facts for Factorials:

1. $2 \cdot 4 \cdot 6 \cdot \ldots \cdot(2 n)=2^{n} n$!
2. $1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n+1)=\frac{(2 n+1)!}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot(2 n)}=\frac{(2 n+1)!}{2^{n} n!}$

Examples:

1. $\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{n}}{n!}$
2. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2 \cdot 4 \cdot 6 \cdot \cdots \cdot(2 n)}{4^{n}}$

The Root Test:

The Root Test (RoT): Let $\sum_{n=1}^{\infty} a_{n}$ be a series with nonzero terms and suppose

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\rho
$$

(i) If $\rho<1$, the series converges absolutely.
(ii) If $\rho>1$, the series diverges.
(iii) If $\rho=1$, the test is inconclusive.

NOTES:

1. For any type of series: positive, alternating, or other.
2. If $\rho=1$, the test fails. You must use a different test.
3. If $\rho=+\infty$, the series diverges (ρ does not have to be finite for this test).
4. If $\rho=0$, the series converges (ρ can have a value of 0 in this test).
5. This test is most useful for series involving powers only.
6. For series involving both powers and factorials use the Ratio Test (RT).

Example: Use the Root Test to determine if the following series diverges or converges.

$$
\sum_{n=1}^{\infty}\left(\frac{n+1}{2 n+1}\right)^{n}
$$

Section 12.7: Strategy for Testing Series

1. If $\lim a_{n} \neq 0$, conclude from the $n^{\text {th }}$ Term Test that the series diverges. $n \rightarrow \infty$
2. If a_{n} involves n !, or r^{n}, try the Ratio Test.
3. If a_{n} involves n^{n}, try the Root Test (or possibly the Ratio Test).
4. If the series is alternating, then obviously try the Alternating Series Test. (Don't forget to determine absolute or conditional convergence.)
5. If a_{n} is a positive series and involves only constant powers of n, try the Limit Comparison Test. In particular, if a_{n} is a rational expression in n, use this test with b_{n} as the quotient of the leading terms from numerator and denominator.
6. If the tests above do not work and the series is positive, try the Comparison Test or the Integral Test.
7. If all else fails, try some clever manipulation or a neat "trick" to determine convergence or divergence.
