SECTION 12.5: Alternating Series

Alternating Series:

Definition: An alternating series is a series whose terms alternate signs. For example,

$$
\sum(-1)^{n} a_{n} \text { or } \sum(-1)^{n-1} a_{n}
$$

Alternating Series Test (AST): If the alternating series

$$
\begin{gathered}
a_{1}-a_{2}+a_{3}-a_{4}+\cdots \\
\text { or } \\
-a_{1}+a_{2}-a_{3}+a_{4}-\cdots
\end{gathered}
$$

satisfies
(i) $\quad a_{n+1} \leq a_{n}$ for all n, that is $\left\{a_{n}\right\}$ is a decreasing sequence
(ii) $\lim _{n \rightarrow \infty} a_{n}=0$
then the series is convergent.
NOTES:
(a) The terms of $\left\{a_{n}\right\}$ must be decreasing $\left(a_{n+1} \leq a_{n}\right)$ and $\lim _{n \rightarrow \infty} a_{n}=0$. If $\lim \alpha_{n} \neq 0$, then the series diverges by the $\underline{n \text { th-term test. }}$ $n \rightarrow \infty$
(b) If the series is not an alternating series, $\lim _{n \rightarrow \infty} a_{n}=0$ does not insure convergence!

Examples:

1. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}$
2. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n!}$
3. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{2 n-1}$

Approximating the Sum of an Alternating Series

Theorem: If a convergent alternating series satisfies the condition $\alpha_{n+1} \leq \alpha_{n}$, then the absolute value of the remainder R_{N} involved in approximating the sum s by s_{N} is less than (or equal to) the first neglected term. That is,

$$
\left|s-s_{N}\right|=\left|R_{N}\right| \leq a_{N+1} .
$$

Example: Approximate the sum of the following series by its first six terms. Find a bound for the error in your approximation.

$$
\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{1}{n!}\right)
$$

