SECTION 12.5: Alternating Series

Alternating Series:

Definition: An *alternating series* is a series whose terms alternate signs. For example,

 $\sum (-1)^n a_n$ or $\sum (-1)^{n-1} a_n$.

Alternating Series Test (AST): If the alternating series

$$a_1 - a_2 + a_3 - a_4 + \cdots$$

or

$$-a_1 + a_2 - a_3 + a_4 - \cdots$$

satisfies

(i) a_{n+1} ≤ a_n for all n, that is {a_n} is a decreasing sequence
(ii) lim_{n→∞} a_n = 0

ii) lim
$$a_n =$$

then the series is convergent.

NOTES:

- The terms of $\{a_n\}$ must be decreasing $(a_{n+1} \le a_n)$ and $\lim_{n \to \infty} a_n = 0$. If (a) **lim** $a_n \neq 0$, then the series diverges by the <u>*n*th-term test</u>.
- (b) If the series is not an alternating series, $\lim_{n \to \infty} a_n = 0$ does <u>not</u> insure convergence!

Examples:

1.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$

2.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n!}$$

3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{2n - 1}$$

Approximating the Sum of an Alternating Series

Theorem: If a convergent alternating series satisfies the condition $a_{n+1} \le a_n$, then the absolute value of the remainder R_N involved in approximating the sum s by s_N is less than (or equal to) the first neglected term. That is,

$$|s - s_N| = |R_N| \leq a_{N+1}.$$

Example: Approximate the sum of the following series by its first six terms. Find a bound for the error in your approximation.

$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{n!}\right)$$