Section 12.4: The Comparison Tests

The Comparison Test:

The Comparison Test (CT):
(i) If $0 \leq a_{n} \leq b_{n}$ for all $n>N$ and if $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(ii) If $a_{n} \geq b_{n} \geq 0$ for all $n>N$ and if $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

NOTES:

1. To be used for positive term series.
2. Any series that is term by term smaller than a series known to converge must also converge; any series that is term by term larger than a series known to diverge must also diverge. However, comparing a series to a "larger" series known to diverge or comparing a series to a "smaller" series known to converge tells nothing. Be careful of the inequality signs!
3. For comparison, pick a series "close" to the series in question (pick geometric, harmonic, or p-series).

Useful Facts for Comparison Test:

(a) $\ln n<n$
(b) $\ln n>1$, for $n>e$
(c) $-1 \leq \cos n \leq 1$

$$
-1 \leq \sin n \leq 1
$$

Examples: Use the Comparison Test (CT) to determine if the following series diverge or converge.

1. $\sum_{n=1}^{\infty} \frac{7}{n^{4}+3}$
2. $\sum_{n=1}^{\infty} \frac{2^{n}}{5^{n} \sqrt{n}}$
3. $\sum_{n=1}^{\infty} \frac{\ln n}{2 \sqrt{n}}$

Limit Comparison Test:

The Limit Comparison Test (LCT): Suppose $a_{n} \geq 0, b_{n} \geq 0$, and

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L
$$

If $0<L<\infty$, then both $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ either converge or diverge. If $L=0$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.

NOTES:

(a) For positive term series.
(b) This test is very useful in comparing a very "messy" algebraic series to a "simple" known series. (A term by term comparison in order to use the Comparison Test can be time consuming.)
(c) The choice of "simple" known series takes some intuition. For "messy" algebraic series, disregard all but the highest power of n in the numerator and the highest power of n in the denominator and compare to a known p-series. For number raised to " n ", the series is either a geometric series or can be compared to a known geometric series.

Examples: Use the Limit Comparison Test (LCT) to determine if the following series converge or diverge.

1. $\sum_{n=3}^{\infty} \frac{1}{(n-2)^{2}}$
2. $\sum_{n=1}^{\infty} \frac{\sqrt{n}+1}{\sqrt{3 n^{2}+1}}$
3. $\sum_{n=1}^{\infty} \frac{2^{n}}{4 \cdot 3^{n}-5}$
