Section 12.10: Taylor and Maclaurin Series

The Uniqueness Theorem: Suppose f satisfies

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots
$$

for all x in some interval around a. Then

$$
c_{n}=\frac{f^{(n)}(a)}{n!}
$$

Thus, a function cannot have more than one power series in $x-a$ that represents it.

NOTES:

1. Consider $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ and the following derivatives:

$$
\begin{aligned}
& f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-\alpha)^{3}+c_{4}(x-\alpha)^{4}+\ldots \\
& f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 a_{4}(x-\alpha)^{3}+\ldots \\
& f^{\prime \prime}(x)=\quad 2 c_{2} \quad+3 \cdot 2 c_{3}(x-a)+4 \cdot 3 c_{4}(x-a)^{2}+\ldots \\
& f^{\prime \prime \prime}(x)=\quad 3 \cdot 2 c_{3}+4 \cdot 3 \cdot 2 c_{4}(x-a)+\ldots \\
& f^{(4)}(x)=
\end{aligned}
$$

$$
\begin{aligned}
& c_{0}=\frac{f(a)}{0!} \quad c_{1}=\frac{f^{\prime}(a)}{1!} \\
& \text { Solving for } \\
& \text { each } \\
& \text { coefficient: } \\
& f(\alpha)=c_{0} \\
& f^{\prime}(a)=c_{1} \\
& f^{\prime \prime}(a)=2!c_{2} \\
& f^{\prime \prime \prime}(\alpha)=3!c_{3} \\
& f^{(4)}(a)=4!c_{4} \\
& f^{(n)}(a)=n!c_{n} \\
& c_{2}=\frac{f^{\prime \prime}(a)}{2!} \quad c_{3}=\frac{f^{\prime \prime \prime}(a)}{3!} \\
& c_{4}=\frac{f^{(4)}(a)}{4!} \text { and } \\
& c_{n}=\frac{f^{(n)}(a)}{n!}
\end{aligned}
$$

In each case, if $x=a$
2. A power series $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ where coefficients are given by

$$
c_{n}=\frac{f^{(n)}(\alpha)}{n!}
$$

is called a Taylor series.
3. When $a=0$, the series is known as a Maclaurin Series.
4. The last part of the Uniqueness Theorem tells us that there is only one power series representation for a function. In particular, the geometric series and differentiation/integration techniques of the last section yield Taylor and Maclaurin series.

Examples:

1. Find the Maclaurin series for $f(x)=\sin x$.

$$
\begin{array}{rlrl}
f(x) & =\sin x & f(0) & =\sin 0
\end{array}=0
$$

So,

$$
\begin{aligned}
f(x) & =\sin x \\
& =f(0)+\frac{f^{\prime}(0)}{1!}(x-0)+\frac{f^{\prime \prime}(0)}{2!}(x-0)^{2}+\frac{f^{\prime \prime \prime}(0)}{3!}(x-0)^{3}+\frac{f^{(4)}(0)}{4!}(x-0)^{4}+\cdots \\
& =0+x+0+\frac{(-1)}{3!} x^{3}+0+\frac{1}{5!} x^{5}+0+\frac{(-1)}{7!} x^{7}+\cdots \\
& =x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\frac{1}{7!} x^{7}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

Now, we use the Ratio Test to find the domain:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{x^{2(n+1)+1}}{[2(n+1)+1]!} \cdot \frac{(2 n+1)!}{x^{2 n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{2 n+3}}{(2 n+3)!} \cdot \frac{(2 n+1)!}{x^{2 n+1}}\right| \\
& \quad=\lim _{n \rightarrow \infty}\left|\frac{x^{2 n+1} x^{2}}{(2 n+3)(2 n+2)(2 n+1)!} \cdot \frac{(2 n+1)!}{x^{2 n+1}}\right| \\
& \quad=\lim _{n \rightarrow \infty}\left|\frac{x^{2}}{(2 n+3)(2 n+2)}\right| \\
& \quad=\left|x^{2}\right| \lim _{n \rightarrow \infty} \frac{1}{(2 n+3)(2 n+2)}
\end{aligned}
$$

Note that $\lim _{n \rightarrow \infty} \frac{1}{(2 n+3)(2 n+2)}=0$. Thus, $\rho=0$ which implies the radius of convergence is $r=\infty$. Hence, the domain is all reals. So,

$$
\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \text { for }-\infty<x<\infty .
$$

2. Find the Maclaurin series for $f(x)=\cos x$.

Now, we could use the same process as we did in Example 1. However, it is easier if we recognize that $\cos x=\frac{d}{d x}(\sin x)$. Thus,

$$
\begin{aligned}
\cos x & =\frac{d}{d x}\left[\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}\right] \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n+1) x^{2 n}}{(2 n+1) \cdot(2 n)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& =1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+\cdots
\end{aligned}
$$

Since the domain for $\sin x$ is all reals, the domain for $\cos x$ is also all reals; i.e., $-\infty<x<\infty$ or $(-\infty, \infty)$.
3. Find the Maclaurin series for $g(x)=e^{x^{2}}$.

Let $f(x)=e^{x}$ so that $g(x)=f\left(x^{2}\right)$.

$$
\begin{array}{rlrl}
f(x) & =e^{x} & f(0) & =e^{0}=1 \\
f^{\prime}(x) & =e^{x} & f^{\prime}(0) & =e^{0}=1 \\
f^{\prime \prime}(x) & =e^{x} & f^{\prime \prime}(0) & =e^{0}=1
\end{array}
$$

Thus,

$$
e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

and

$$
\begin{aligned}
e^{x^{2}}=g(x)=f\left(x^{2}\right) & =1+x^{2}+\frac{1}{2!} x^{4}+\frac{1}{3!} x^{6}+\frac{1}{4!} x^{8}+\ldots \\
& =\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!} .
\end{aligned}
$$

So,

$$
\left.\begin{array}{cc}
f(x)=e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \text { for all } x \\
& \text { and } \\
g(x)=e^{x^{2}}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!} \quad \text { for all } x
\end{array}\right\} \quad \begin{gathered}
\\
\text { Verify domain using } \\
\text { Ratio Test! }
\end{gathered}
$$

4. Find the Taylor Series for $f(x)=\ln x$ at $a=1$.

Method 1: (Geometric Series)

$$
\begin{aligned}
f(x) & =\ln x \\
f^{\prime}(x) & =\frac{1}{x}=\frac{1}{1-(1-x)}=\frac{1}{1+(x-1)} \\
& =\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n} \text { for }|x-1|<1 \text { or } 0<x<2
\end{aligned}
$$

So, $\int \sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n}=C+\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-1)^{n+1}}{n+1}$.
Hence, $\ln x=C+\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-1)^{n+1}}{n+1}$. Substituting 1 for x, we find that $C=0$. Thus,

$$
\ln x=\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-1)^{n+1}}{n+1} \quad \text { for } 0<x \leq 2 .
$$

Verify the convergence and divergence at the endpoints.
Method 2: (Taylor's Theorem)

$$
\begin{aligned}
f(x) & =\ln x \\
f^{\prime}(x) & =x^{-1} \\
f^{\prime \prime}(x) & =-x^{-2} \\
f^{\prime \prime \prime}(x) & =2 x^{-3} \\
f^{(4)}(x) & =-6 x^{-4} \\
& \vdots \\
f^{(n)}(x) & =(-1)^{n-1}(n-1)!x^{-n}
\end{aligned}
$$

$$
f(1)=0
$$

$$
f^{\prime}(1)=1
$$

$$
f^{\prime \prime}(1)=-1
$$

$$
f^{\prime \prime \prime}(1)=2
$$

$$
f^{(4)}(1)=-6
$$

$$
f^{(n)}(1)=(-1)^{n-1}(n-1)!
$$

Hence,

$$
\begin{aligned}
f(x) & =f(1)+\frac{f^{\prime}(1)}{1!}(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\frac{f^{\prime \prime \prime}(1)}{3!}(x-1)^{3}+\frac{f^{(4)}(1)}{4!}(x-1)^{4}+\ldots \\
& =0+(x-1)-\frac{1}{2}(x-1)^{2}+\frac{2}{6}(x-1)^{3}-\frac{6}{24}(x-1)^{4}+\ldots \\
& =(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}+\frac{1}{4}(x-1)^{4}+\ldots \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-1)^{n}}{n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-1)^{n+1}}{n+1} \text { for } 0<x \leq 2
\end{aligned}
$$

Verify the domain by using the Ratio Test.
5. Find the Maclaurin Series for $f(x)=\frac{x^{3}}{4+9 x^{2}}$. Method 1: (Geometric Series)

$$
\begin{aligned}
f(x)=\frac{x^{3}}{4+9 x^{2}} & =\frac{x^{3}}{4} \cdot \frac{1}{1-\left(-\frac{9}{4} x^{2}\right)} \\
& =\frac{x^{3}}{4} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{9}{4} x^{2}\right)^{n}
\end{aligned}
$$

So,

$$
f(x)=\frac{x^{3}}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n} x^{2 n}}{2^{2 n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n} x^{2 n+3}}{2^{2 n+2}}
$$

Since this series came from a geometric series the domain (or interval of convergence) is:

$$
\begin{gathered}
\left|\frac{9}{4} x^{2}\right|<1 \\
\text { or } \\
\left|x^{2}\right|<\frac{4}{9} \\
\text { or } \\
|x|<\frac{2}{3} \\
\text { or } \\
-\frac{2}{3}<x<\frac{2}{3}
\end{gathered}
$$

Method 2: (Taylor's Theorem)

$$
\text { Let } \begin{array}{rlrl}
g(x) & =\frac{1}{1+x} . \text { Then } f(x)=\frac{x^{3}}{4} g\left(\frac{9 x^{2}}{4}\right) . & \\
& & \\
g(x) & =(1+x)^{-1} & g(0) & =1 \\
g^{\prime}(x) & =-(1+x)^{-2} & g^{\prime}(0) & =-1 \\
g^{\prime \prime}(x) & =2(1+x)^{-3} & g^{\prime \prime}(0) & =2 \\
g^{\prime \prime \prime}(x) & =-6(1+x)^{-4} & g^{\prime \prime \prime}(0) & =-6 \\
& \vdots & & \vdots \\
g^{(n)}(x) & =(-1)^{n} n!(1+x)^{-n-1} & g^{(n)}(0) & =(-1)^{n} n!
\end{array}
$$

So,

$$
\begin{aligned}
g(x) & =g(0)+\frac{g^{\prime}(0)}{1!}(x-0)+\frac{g^{\prime \prime}(0)}{2!}(x-0)^{2}+\frac{g^{\prime \prime \prime}(0)}{3!}(x-0)^{3}+\frac{g^{(4)}(0)}{4!}(x-0)^{4}+\ldots \\
& =1-x+\frac{2}{2} x^{2}+\frac{-6}{6} x^{3}+\frac{24}{24} x^{4}+\ldots \\
& =1-x+x^{2}-x^{3}+x^{4}-\ldots \\
& =\sum_{n=0}^{\infty}(-1)^{n} x^{n}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
f(x) & =\frac{x^{3}}{4} g\left(\frac{9 x^{2}}{4}\right) \\
& =\frac{x^{3}}{4} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{9 x^{2}}{4}\right)^{n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n} x^{2 n+3}}{2^{2 n+2}} \text { for }-\frac{2}{3}<x<\frac{2}{3}
\end{aligned}
$$

Verify the domain by the Ratio Test!
6. Find the Maclaurin series for $f(x)=(1+x)^{k}$, where k is any real number.

Using Taylor's Theorem, we have

$$
\begin{aligned}
f(x) & =(1+x)^{k} \\
f^{\prime}(x) & =k(1+x)^{k-1} \\
f^{\prime \prime}(x) & =k(k-1)(1+x)^{k-2} \\
f^{\prime \prime \prime}(x) & =k(k-1)(k-2)(1+x)^{k-3} \\
& \vdots \\
f^{(n)}(x) & =k(k-1) \cdots(k-n+1)(1+x)^{k-n}
\end{aligned}
$$

For $x=0$, we find that

$$
\begin{aligned}
f(0) & =1 \\
f^{\prime}(0) & =k \\
f^{\prime \prime}(0) & =k(k-1) \\
f^{\prime \prime \prime}(0) & =k(k-1)(k-2) \\
& \vdots \\
f^{(n)}(0) & =k(k-1) \cdots(k-n+1)
\end{aligned}
$$

Therefore, the Maclaurin series for $f(x)=(1+x)^{k}$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{k(k-1) \ldots(k-n+1)}{n!} x^{n}
$$

This series is called the binomial series. Using the Ratio Test, this series will converge if $|x|<1$ and diverge is $|x|>1$. (Verify this!) Convergence at the endpoints, ± 1, depends on the value for k.

The traditional notation for the coefficients of the binomial series is

$$
\binom{k}{n}=\frac{k(k-1)(k-2) \cdots(k-n+1)}{n!}
$$

and these numbers are called the binomial coefficients.

THE BINOMIAL SERIES: If k is any real number and $|x|<1$, then

$$
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots
$$

The series converges at the endpoint 1 if $-1<k \leq 0$. The series converges at both endpoints, ± 1, if $k \geq 0$.
7. Represent $\sqrt{1+x}$ as a Maclaurin series.

Using the Binomial Series above, we find that

$$
\begin{aligned}
(1+x)^{1 / 2} & =1+\frac{1}{2} x+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} x^{2}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!} x^{3}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{4!} x^{4}+\cdots \\
& =1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{128} x^{5}+\cdots
\end{aligned}
$$

Please note the table of important Maclaurin series on page \quad r\%9 of the text.

Exercises:

1. Find the Maclaurin series for $f(x)=x \cos (3 x)$. Use the power series for $\cos x$ we developed in Example 2 on page 2. State the domain.
2. Find the Maclaurin series for $g(x)=\arctan x$. Use this result to find the Maclaurin series for $f(x)=\frac{\arctan \left(x^{3}\right)}{x}$. State the domain.
3. Find the Taylor series for $f(x)=\ln (2 x+3)$ about $a=-1$. State the domain.
4. Find the Maclaurin series for $f(x)=x^{2} \sin \left(x^{2}\right)$. Use the power series for $\sin x$ we developed in Example 1 on page 2. State the domain.

Answers:

1. $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n} x^{2 n+1}}{(2 n)!}$, all x
2. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1},-1 \leq x \leq 1 ; \quad \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n+2}}{2 n+1},-1 \leq x \leq 1$
3. $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n+1}(x+1)^{n+1}}{n+1}, \quad-\frac{3}{2} \leq x \leq \frac{3}{2}$
4. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+4}}{(2 n+1)!}$, all x
