Section 12.1: Sequences

Introduction:

A sequence $\left\{a_{n}\right\}$ is a function whose domain is the set of positive integers. The function values $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ are called the terms of the sequence.
The value of the function at the integer n is a_{n}.
The variable n is called the index.
A sequence may be specified in three ways:

- By an explicit formula,

$$
a_{n}=2\left(3^{n}\right)
$$

- By a recursive formula, and

$$
a_{n+1}=3 a_{n}, \quad a_{1}=6
$$

- By giving enough terms to establish a pattern. $6,18,54,162, \ldots$

Graphing a Sequence on the TI-83/84:

1. Press MODE. Select Seq at the end of the fourth line.
2. Press $\mathbf{Y}=$ and type in the sequence. Use the $\boldsymbol{X}, \boldsymbol{T}, \boldsymbol{\theta}, \boldsymbol{n}$ key to get the variable n.
3. Adjust the viewing window as necessary.

Example: Graph the sequence $b_{n}=1+\frac{1}{n}$.

The Limit of a Sequence:

Consider the sequence $b_{n}=1+\frac{1}{n}$.

$$
b_{1}=2, b_{2}=3 / 2, b_{3}=4 / 3, b_{4}=5 / 4, b_{5}=6 / 5, b_{6}=7 / 6 .
$$

It appears that $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)=1$.

NOTE: All limit theorems for functions (learned in Calculus I) also apply to sequences.

Definition: If $\lim _{n \rightarrow \infty} a_{n}=L$ is finite, then the sequence $\left\{a_{n}\right\}$ converges; if $\lim \boldsymbol{a}_{n}=L$ is infinite or does not exist, then the sequence $\left\{a_{n}\right\}$ diverges. $n \rightarrow \infty$

Observe that if p is a positive number $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0$.

Examples: Show that the following sequences converge.

1. $a_{n}=\frac{n^{2}+3 n}{2 n^{2}+1}$
2. $\quad b_{n}=\frac{3 n-1}{n+\sqrt{n}}$

Theorem: Let $\left\{a_{n}\right\}$ be a sequence and let f be a function defined on $[1, \infty)$ such that $f(n)=a_{n}$ for $n=1,2,3, \ldots$.

$$
\text { If } \lim _{x \rightarrow \infty} f(x)=L, \text { then } \lim _{n \rightarrow \infty} a_{n}=L
$$

However, it is not necessarily true that if $\lim a_{n}=L$, then $\lim f(x)=L$. For $n \rightarrow \infty \quad x \rightarrow \infty$ example:

If $f(x)=\sin \pi x$, then $\lim \sin \pi x$ does not exists. See the graph below. $x \rightarrow \infty$

If $\alpha_{n}=\sin \pi n$, then $\lim \sin \pi n=0$. This is because $\sin (n \pi)$ is a succession of $n \rightarrow \infty$
zeros for $n=1,2,3, \ldots$ See the graph below.

Example: Does $\left\{\frac{\ln n}{e^{n}}\right\}$ converge?

Some Convergence Theorems:

The Squeeze Theorem: Suppose that $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$ both converge to L and that $a_{n} \leq b_{n} \leq c_{n}$ for $n \geq K$ (K is a fixed positive integer). Then $\left\{b_{n}\right\}$ converges to L.

Example: Use the Squeeze Theorem to show that $\left\{\frac{\sin ^{3} n}{n}\right\}$ converges.

Absolute Value Theorem: If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Example: Show that if $-1<r<1$, then the sequence $\left\{r^{n}\right\}$ converges.
Solution:
If $r=0, \lim 0^{n}=0$. So, we only need to deal with the case when $-1<r<0$ $n \rightarrow \infty$
and $0<r<1$; that is, when $0<|r|<1$.
Since $|r|<1, \frac{1}{|r|}>1$. Thus, there is some positive number p such that $\frac{1}{|r|}=1+p$.

Now, we recall the Binomial Formula which says

$$
\begin{aligned}
(a+b)^{n}= & a^{n}+n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}+\frac{n(n-1)(n-2)}{3!} a^{n-2} b^{3} \\
& +\cdots+n a b^{n-1}+b^{n} \\
= & \sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} .
\end{aligned}
$$

Note that

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Using the Binomial Formula, we see that

$$
\frac{1}{\left|r^{n}\right|}=\frac{1}{|r|^{n}}=(1+p)^{n}=1+n p+\text { other positive terms }
$$

$$
\geq n p .
$$

Hence, we know that

$$
0 \leq\left|r^{n}\right| \leq \frac{1}{n p}
$$

and that

$$
\lim _{n \rightarrow \infty} 0=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{1}{n p}=0
$$

So, by the Squeeze Theorem, $\lim _{n \rightarrow \infty}\left|r^{n}\right|=0$. And, by the theorem above $\lim r^{n}=0$.

Monotonic Sequences:

A sequence $\left\{a_{n}\right\}$ is called nondecreasing if $a_{n} \leq a_{n+1}, n \geq 1$.
A sequence $\left\{b_{n}\right\}$ is called nonincreasing if $b_{n} \geq b_{n+1}, n \geq 1$.
A sequence is monotonic if it is either nondecreasing or nonincreasing.
Two examples of nondecreasing sequences are

$$
a_{n}=n^{2} \quad \text { and } \quad b_{n}=1-\frac{1}{n} .
$$

A nondecreasing sequence can do one of two things:

1. March off to infinity, or
2. If it is bounded above (that is, $a_{n} \leq K$ for $n \geq 1$ and some fixed number K), then it must bump against a "lid." See the diagram below.

A nondecreasing
sequence that is
bounded above by 2 .
NOTE: Sequence $\left\{a_{n}\right\}$ above marches off to infinity. However, sequence $\left\{b_{n}\right\}$ above is bounded above by 1 and has limit 1 .

Bounded Sequences:

1. A sequence $\left\{a_{n}\right\}$ is bounded above if there is a real number M such that $a_{n} \leq M$ for all n. The number M is called an upper bound of the sequence.
2. A sequence $\left\{a_{n}\right\}$ is bounded below if there is a real number N such that $a_{n} \geq N$ for all n. The number N is called an lower bound of the sequence.
3. A sequence $\left\{a_{n}\right\}$ is bounded if it is bounded above and bounded below.

Monotonic Sequence Theorem: Every bounded, monotonic sequence is convergent.

NOTE: In the theorem above it is not necessary that the sequence $\left\{a_{n}\right\}$ be monotonic initially, only that they be monotonic from some point on-that is, for $n \geq K$. In fact, the convergence or divergence of a sequence does not depend on the character of its initial terms but rather on what is true for large n.

Example: Use the Monotonic Sequence Theorem to show that

$$
a_{n}=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right) \cdots\left(1-\frac{1}{n^{2}}\right), \quad n \geq 2
$$

converges.

