
Section 12.1:  Sequences

Introduction:
A sequence {an} is a function whose domain is the set of positive integers.
The function values a1, a2, a3, . . . , an, . . . are called the terms of the sequence.
The value of the function at the integer n is an.
The variable n is called the index.

A sequence may be specified in three ways:
• By an explicit formula,

an = 2(3n)
• By a recursive formula, and

• By giving enough terms to establish a pattern.
6, 18, 54, 162, . . .

Graphing a Sequence on the TI-83/84:
1. Press MODE.  Select Seq at the end of the fourth line.
2. Press Y= and type in the sequence.  Use the X,T,2,n key to get the

variable n.
3. Adjust the viewing window as necessary.

Example: Graph the sequence .
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The Limit of a Sequence:

Consider the sequence .

b1 = 2, b2 = 3/2, b3 = 4/3, b4 = 5/4, b5 = 6/5, b6 = 7/6.

It appears that 

NOTE:  All limit theorems for functions (learned in Calculus I) also apply to
sequences.

Definition:  If  is finite, then the sequence {an} converges; if

 is infinite or does not exist, then the sequence {an} diverges.

Observe that if p is a positive number .
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Examples:  Show that the following sequences converge.

1.

2.



4

Theorem:  Let {an} be a sequence and let f be a function defined on [1,4) such that
f(n) = an for n = 1, 2, 3, . . . .

If , then .

However, it is not necessarily true that if , then .  For

example:
If , then  does not exists.  See the graph below.

The graph of
.

If , then   This is because sin (nB) is a succession of

zeros for n = 1, 2, 3, . . . .  See the graph below.

The graph of

with 
superimposed.
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Example:  Does  converge?

Some Convergence Theorems:

The Squeeze Theorem:  Suppose that {an} and {cn} both converge to L and that
for  (K is a fixed positive integer).  Then {bn} converges to L.

Example:  Use the Squeeze Theorem to show that  converges.
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Absolute Value Theorem:  If  then 

Example:  Show that if !1 < r < 1, then the sequence {rn} converges.

Solution:
If r = 0,   So, we only need to deal with the case when !1 < r < 0

and 0 < r < 1; that is, when 0 < |r| < 1.

Since |r| < 1,   Thus, there is some positive number p such that

Now, we recall the Binomial Formula which says

Note that

Using the Binomial Formula, we see that

Hence, we know that

and that

So, by the Squeeze Theorem,   And, by the theorem above
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Monotonic Sequences:
A sequence {an} is called nondecreasing if an # an + 1, n $ 1.
A sequence {bn} is called nonincreasing if bn $ bn + 1, n $ 1.
A sequence is monotonic if it is either nondecreasing or nonincreasing.

Two examples of nondecreasing sequences are

A nondecreasing sequence can do one of two things:
1. March off to infinity, or
2. If it is bounded above (that is,  for  and some fixed number K),

then it must bump against a “lid.”  See the diagram below.

A nondecreasing
sequence that is

bounded above by 2.

NOTE:  Sequence {an} above marches off to infinity.  However, sequence {bn}
above is bounded above by 1 and has limit 1.

Bounded Sequences:
1. A sequence {an} is bounded above if there is a real number M such that

 for all n.  The number M is called an upper bound of the sequence.

2. A sequence {an} is bounded below if there is a real number N such that
 for all n.  The number N is called an lower bound of the sequence.

3. A sequence {an} is bounded if it is bounded above and bounded below.
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Monotonic Sequence Theorem: Every bounded, monotonic sequence is
convergent.

NOTE:  In the theorem above it is not necessary that the sequence {an} be
monotonic initially, only that they be monotonic from some point on—that is, for

.  In fact, the convergence or divergence of a sequence does not depend on the
character of its initial terms but rather on what is true for large n.

Example:  Use the Monotonic Sequence Theorem to show that

converges.


