(a) True
(b) True
(c) True
2.
(a) $f=6, v=8, e=12$
$6+8-12=2$
(b) $f=20, v=12, e=30$
$20+12-30=2$
3. $\$ 49.50$
4. $\quad 191.44 \mathrm{ft}^{2}$
5. $\quad 6,434.9 \mathrm{~cm}^{3}$
6. $\quad 46.8 \mathrm{ft}^{3}$ (approximately)
7. $118,221 \mathrm{~cm}^{2}$
8. $34,835.6 \mathrm{~m}^{3}$
9. $\quad 127.2 \mathrm{ft}^{2}$
10. $18,303,390 \mathrm{in}^{3}$
11. $\mathrm{SA}=3,676 \mathrm{~mm}^{2}$ (approximately); $\mathrm{V}=16,965 \mathrm{~mm}^{3}$ (approximately)
12. $\quad 305.8 \mathrm{~cm}^{2}$ (approximately)
13. $3,294.2 \mathrm{~m}^{3}$ (approximately)
14. $\mathrm{SA}=79.4 \mathrm{~cm}^{2}$ (approximately); $\mathrm{V}=58.3 \mathrm{~cm}^{3}$ (approximately)
15. $78,539.8 \mathrm{~cm}^{3}$ (approximately)
16. $\quad 191.1 \mathrm{ft}^{2}$ (approximately)
17. $\quad 7.79 \mathrm{~cm}^{3}$ (approximately)
18. 774,260,589.1 g (approximately)
19. $\quad \mathrm{V}_{\text {pyramid }}=53.3$ in 3 (approximately); $\mathrm{V}_{\text {prism }}=160 \mathrm{in}^{3} ; \mathrm{V}_{\text {pyramid }}=1 / 3 \mathrm{~V}_{\text {prism }}$
20. $\quad \mathrm{V}_{\text {sphere }}=4,189 \mathrm{~cm}^{3}$ (approximately); $\mathrm{V}_{\text {cone }}=2,094 \mathrm{~cm}^{3} ; \mathrm{V}_{\text {cone }}=1 / 2 \mathrm{~V}_{\text {sphere }}$
21.
(a) $(-5,-1)$ III
(b) $(5,2)$ I
(c) $(0,-5) y$-axis
22. $\mathrm{y}=-1 / 4 \mathrm{x}+6$
23. x-intercept $(-4 / 3,0)$; y-intercept $(0,4)$
24. x -axis
25. $\quad x$-intercept $(2,0)$; y-intercept $(0,4)$
26. \quad-intercept $(4,0)$

27.
(a) $5 / 2$
(b) $9 / 2$
(c) $1 / 5$
28.
(a) $\sqrt{29}$
(b) $\sqrt{85}$
(c) $\sqrt{26}$
29. 8 or -2
30. $(-5,-1)$
31. True
32. $-1 / 5$
33. $y=3 x-9$
34. $\mathrm{A}=48$ square units; $\mathrm{P}=36$ units
35. $4 \mathrm{x}+\mathrm{y}=-1$ or $4 \mathrm{x}+\mathrm{y}+1=0$
36. $y=-5 x+5$
37. $(b+a, c)$
38. Answers may vary.

Using the general points $(0,0),(0, y),(x, 0)$, and (x, y), use the distance formula.
Distance from $(0, y)$ to $(x, 0) \quad$ Distance from $(0,0)$ to (x, y)

$$
\begin{aligned}
& \sqrt{(x-0)^{2}+(0-y)^{2}}=\sqrt{(x-0)^{2}+(y-0)^{2}} \\
& \sqrt{x^{2}+(-y)^{2}}=\sqrt{(x)^{2}+(y)^{2}} \\
& \sqrt{x^{2}+y^{2}}=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

