1. $2 / 3$
2. ${ }^{1 / 13}$
3. $3 / 4$
4. (a) $1 / 1024$
(b) False
5. (a) $4 / 13$
(b) $8 / 13$
(c) b
6. ${ }^{1 / 36}$
7. ${ }^{7} / 24$
8. (a) ${ }^{125 / 729}$
(b) $5 / 42$
9. 362,880
10. (a) $1 / 4$
(b) $1 / 8$
(c) $1 / 16$
11. ${ }^{21} / 1292$
12. (a) $5 / 12$
(b) $5 / 33$
(c) $125 / 1728$
13. (a) $1 / 4 \quad$ (b) $1 / 2$
(c) Answers may vary. Using RandInt(1,4), we could let the selecting of an even number represent the spinner landing on red; 1 could represent the spinner landing on yellow; and 3 could represent landing on blue.
14. (a) ${ }^{1 / 3}$
(b) $2 / 3$
(c) 1
15. 495
16. (a) $1 / 6$
(b) $1 / 12$
(c) $1 / 6$
(d) $1 / 2$
17. $1 / 2$
18. $1 / 8$
19. (a) $1 / 3$
(b) $5 / 18$
20. 91%
21. 17,576,000
22. 33,649
23. 30 times
24. (a) $\frac{6!}{3!3!}=20$
(b) $\frac{7!}{3!}=840$
25. 23%
26. $23 / 50$ or 46%
27. (a) 6%
(b) 94%
28. 720 ways
29. - $\$ 1.67 /$ ticket
30. (a) Answers may vary. Using RantInt (0, 99999), which would produce random five-digit numerals. We could let odd digits be boys and even digits be girls. Then $\mathrm{P}($ girl $)=\mathrm{P}$ (boy) $=1 / 2$ which has been generally true. There are a lot of factors which could affect the likelihoods, though, so the actual problem is quite complex!
(b) Answers may vary. Theoretically, $\mathrm{P}($ all 5 girls $)=\mathrm{P}($ all 5 boys $)=1 / 32 \approx 3 \%$.
31. $\mathrm{P}($ Tiger wins the tournament $)=1 / 41 \approx 2 \%$.

Do your best! Rise to the challenge! Live and learn!

