Topic	Customary/Metric Conversion Facts
Length	$1 \mathrm{in} .=2.540 \mathrm{~cm}$ $1 \mathrm{~cm} \approx 0.3937 \mathrm{in}$. $1 \mathrm{ft} \approx 0.3048 \mathrm{~m}$ $1 \mathrm{~m} \approx 3.28 \mathrm{ft}$ $1 \mathrm{yd} \approx 0.9144 \mathrm{~m}$ $1 \mathrm{~m} \approx 1.094 \mathrm{yd}$ $1 \mathrm{mi} \approx 1.6093 \mathrm{~km}$ $1 \mathrm{~km} \approx 0.6214 \mathrm{mi}$
Weight	$1 \mathrm{oz} \approx 28.3 \mathrm{~g}$ $1 \mathrm{~g} \approx 0.0353 \mathrm{oz}$ $1 \mathrm{lb} \approx 0.4536 \mathrm{~kg}$ $1 \mathrm{~kg} \approx 2.205 \mathrm{lb}$
Capacity	$1 \mathrm{qt} \approx 0.9464 \mathrm{~L}$ $1 \mathrm{~L} \approx 1.057 \mathrm{gt}$ $1 \mathrm{gal} \approx 3.785 \mathrm{~L}$ $1 \mathrm{~L} \approx 0.2642 \mathrm{gal}$ $1 \mathrm{fl} \mathrm{oz} \approx 29.574 \mathrm{~mL}$ $1 \mathrm{~mL} \approx 0.03381 \mathrm{fl} \mathrm{oz}$
Area	$\begin{aligned} & 1 \mathrm{in}^{2} \approx 6.4516 \mathrm{~cm}^{2} \\ & 1 \mathrm{ft}^{2} \approx 929 \mathrm{~cm}^{2} \\ & 1 \mathrm{yd}^{2} \approx 8,361 \mathrm{~cm}^{2} \\ & 1 \text { ha }(\text { hectare })=1 \mathrm{hm}^{2} \approx 2.47 \text { acres } \\ & 1 \mathrm{mi}^{2} \approx 2.59 \mathrm{~km}^{2} \end{aligned}$
Volume	$\begin{aligned} & \mathrm{In}^{3} \approx 16.3871 \mathrm{~cm}^{3} \\ & 1 \mathrm{ft}^{3} \approx 28,317 \mathrm{~cm}^{3} \\ & 1 \mathrm{yd}^{3} \approx 0.7646 \mathrm{~m}^{3} \\ & 35.3 \mathrm{ft}^{3} \approx 1 \mathrm{~m}^{3} \end{aligned}$
Temperature	$\begin{array}{ll} \mathrm{F}=1.8 \mathrm{C}+32 & C=\frac{F-32}{1.8} \\ \mathrm{~K}=\mathrm{C}+273.15 & \mathrm{C}=\mathrm{K}-273.15 \end{array}$

Area of a regular polygon $A=1 / 2 \times s \times a \times n$ or $1 / 2 \times a \times p$, where $a=$ the length of the apothem, $s=$ the length of a side, $p=$ the perimeter, and $n=$ the number of sides.

Equation of a circle

Distance formula

Hero's Formula
$(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2}$, where the Center is (h, k) and the radius is r.
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$, where one point is given by the ordered pair $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$, and the other point is $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$.
$A=\sqrt{s(s-a)(s-b)(s-c)}$, where $\mathrm{s}=1 / 2(\mathrm{a}+\mathrm{b}+\mathrm{c})$ for the area of a triangle with sides a, b and c .

