\qquad

1. In the following sequence, the figures are made of cubes that are glued together. If only the exposed surfaces need to be painted (i.e., after gluing), how many squares will be painted in the $12^{\text {th }}$ figure?

2. A store clerk wanted to stack 21 boxes in a window display in a triangular arrangement like the one shown. How many boxes should the clerk place on the bottom row?

3. \quad Refer to the following line m.

(a) Other than m , list two other ways to name the line. \qquad , \qquad
(b) Name two rays on line m that have endpoint B. \qquad , \qquad
(c) Find $\overrightarrow{A B} \cap \overrightarrow{C B}$. \qquad
4. Refer to the diagram of a cube.
(a) $\overleftrightarrow{A B}$ and \qquad are considered skew lines.
(b) $\overleftrightarrow{B F}$ and $\overleftrightarrow{D E}$ are considered \qquad lines.
(c) $\overleftrightarrow{B F}$ and $\overleftrightarrow{A B}$ are considered \qquad lines.

(c) $B F$ and $A B$ are considered
5. Perform each of the following calculations.
(a) $180^{\circ}-45^{\circ} 30^{\prime}$
(b) 0.75° in minutes
(c) $72^{\circ} 41^{\prime} 50^{\prime \prime}+17^{\circ} 18^{\prime} 10^{\prime \prime}$
6. Draw an example of each of the following figures.
(a) A simple closed curve
(c) A convex hexagon
(e) An equilateral pentagon that is not regular
(d) A concave octagon
(b) A closed curve that is not simple
(f) An equiangular quadrilateral that is not a square
(b) A kite
7. Find the measure of each interior angle, each exterior angle, and each central angle in a regular decagon.

Interior angle \qquad Exterior angle \qquad Central angle \qquad
9. Refer to the diagram below. Assume parallel lines.

(a) $\mathrm{m}<\mathrm{a}=$ \qquad
(b) $\mathrm{m}<\mathrm{b}=$ \qquad
(c) $\mathrm{m}<\mathrm{c}=$ \qquad
(d) $\mathrm{m}<\mathrm{d}=$ \qquad
(e) $\mathrm{m}<\mathrm{e}=$ \qquad
(f) $\mathrm{m}<\mathrm{f}=$ \qquad
10. Refer to the diagram. If the two lines are parallel, list
(a) 2 pairs of corresponding angles

11. Find the missing angle measure. $\mathrm{m}<\mathrm{MON}=$ \qquad

12. In general, (a) a polygon with 8 sides is called $a(n)$ \qquad , and
(b) a polygon with 12 sides is called $\mathrm{a}(\mathrm{n})$ \qquad .
13. What type of angle is <LPT? Circle the best answer.

Acute
Right
Obtuse

Straight

14. Give the most detailed name of the following types of triangle and quadrilateral. Give two names in part (a).
(a)

(b)

\qquad triangle
15. Find the missing angle x in the drawings below.
(a)

(b) Assume lines n and m are parallel.

16. On the following representations of a geoboard, construct
(a) a nonconvex (concave) hexagon.
(b) a convex pentagon

17. For a convex octagon, find the sum of the measures of the
(a) Interior angles
(b) Exterior angles, one from each vertex (as shown)

18. List 2 relationships that are true about pairs of sides, angles or diagonals in
(a) A rhombus
(b) A rectangle
19. Find the missing angles in the following diagram (resembling a roof truss). Assume that the figure has line symmetry.

(a) $\mathrm{m}<\mathrm{a}=$ \qquad
(b) $\mathrm{m}<\mathrm{b}=$ \qquad
(c) $\mathrm{m}<\mathrm{c}=$ \qquad
(d) $\mathrm{m}<\mathrm{d}=$ \qquad
(e) $\mathrm{m}<\mathrm{e}=$ \qquad
(f) $m<f=$ \qquad
20. Draw diagrams to illustrate 3 different types of triangles, and give their classification(s).
(a)
(b)
(c)
21. Give the name of any 2 of the 5 Platonic solids pictured below.

(a)

(b)

(c)

(d)

(e)
22. Give the name of the solid.

23. A prism has 10 faces. Use Euler's formula to find how many vertices (V) and edges (E) the prism has.
$\mathrm{V}=$ \qquad $\mathrm{E}=$ \qquad
24. Describe all symmetries of the figure shown.

25. Draw any lines of symmetry for the given figures.
(a)

(b)

(c)

(d)

(e)

(g)

(h)

(i)

26. True or False.
(a) A triangle can have two obtuse angles. \qquad
(b) A parallelogram can have four acute angles.
(c) A quadrilateral can have three right angles.
\qquad
\qquad
27. In a certain triangle, the measure of one angle is twice the measure of the smallest angle. Another angle is 6 degrees more than the smallest angle. Find the measures of all three angles in the triangle.
28. If $\triangle \mathrm{ABC}$ is a right triangle and $\mathrm{m}(<\mathrm{A})=43^{\circ}$, what is the measure of the other acute angle?
29. Determine the missing angles. Assume AB and CD are parallel.

(a) $\mathrm{m}(<\mathrm{x})=$
(b) $\mathrm{m}(<\mathrm{y})=$ \qquad (c) $\mathrm{m}(<\mathrm{z})=$
30. Determine the missing angles.

(a) $m(<x)=$ \qquad
(b) $\mathrm{m}(<\mathrm{y})=$
31. Martha claims that she can easily prove that the sum of the measures of the interior angles in any triangle is 180°. She says that a right triangle is half of a rectangle. Because a rectangle has four right angles, its angles add up to 360°, so the angles of a right triangle add up to half of 360°, or 180°. Next, she claims that she can divide any triangle into two right triangles and use what she proved for right triangles to prove the theorem for any triangle. Is Martha's approach correct? Explain why or why not.
32. Refer to the diagram. Find the following measures.
(a) $\mathrm{m}(\operatorname{arc} \mathrm{ADC})=$ \qquad
(b) $\mathrm{m}(<\mathrm{ABC})=$ \qquad
(c) $\mathrm{m}(<\mathrm{AOC})=$ \qquad

33. In each of the following figures, determine the number of sides of a regular polygon with the stated property. If such a regular polygon does not exist, explain why.
(a) Each exterior angle measures 30°.
(b) Each exterior angle measures 35°.
(c) The sum of all the exterior angles is 3600°.
(d) The total number of diagonals is 252 .
34. In the following figures, draw in dashed lines for the unseen segments.
(a)

(b)

(c)

35. Determine how many lines of symmetry, if any, each of the following figures has.
(a)

(b)

(c)

(d)

(e)

(f)

36. For each of the following figures, identify the types of symmetry (line, turn, or point) it possesses.
(a)

(b)

(c)

37. Carefully draw nets that can be folded into each of the following.
(a) Tetrahedron
(b) Square pyramid
(c) Right circular cylinder
38. The first CCSSM Geometry standard for kindergarten states: "Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to. Refer to the diagram below, and write 3 sentences using the correct name of shape(s) and their relationship to one another. Use all 6 descriptors in your 3 sentences.

(1) \qquad
(2)
(3)
3)

