\qquad
Show work to support each of your solutions. You may use a calculator to check.

1. Simplify, expressing your answer as a power of $3.27^{-3} \cdot 81^{5}$
2. Perform the operations, and simplify completely. $\left(2 \frac{1}{2}\right)^{2}\left(3 \frac{1}{3}\right)^{-2}$

Give your answer as a fraction or mixed number.
3. Simplify: $1 \frac{1}{2}+3 \frac{1}{4}+5 \frac{1}{8}+7 \frac{1}{16}+9 \frac{1}{32}$
4. Solve for m. $\quad 16^{-2} \cdot 64^{6}=4^{m}$
5. Perform the operations, and write your answer in scientific notation. $\quad\left(\frac{8 \cdot 10^{3}}{2 \cdot 10^{-3}}\right)^{2}$
6. Complete with $<,>$, or $=$ to make the statement true. Show each decimal, rounding to the nearest thousandth.
$\frac{\$ 1.19}{32 \mathrm{oz}}-\frac{\$ 1.43}{48 \mathrm{oz}}$
7. Complete with $<,>$, or $=$ to make the statement true. Show each decimal, rounding to the nearest thousandth.

$$
15 \% \text { of } \$ 74.36 _\frac{\$ 12.50}{85 \%}
$$

8. Convert $4 \frac{1}{2} \%$ to a simplified fraction \qquad and to a decimal \qquad -
9. If $\mathrm{f}(\mathrm{n})=\frac{5}{7} \cdot 2 \mathrm{n}$, find $\mathrm{f}(0) \ldots, \quad \mathrm{f}\left(\frac{1}{2}\right) \ldots$, and $\mathrm{f}(-1)$ \qquad .
10. Simplify: $\left(\frac{1}{2}+\frac{2}{3}\right)^{0} \cdot\left(\frac{1}{2}-\frac{2}{3}\right)^{0}$
11. Simplify: $\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} \cdot \frac{5}{6} \cdot \frac{6}{7} \cdot \frac{7}{8} \cdot \frac{8}{9} \cdot \frac{9}{10}$
12. Simplify (writing your answer as a simplified fraction): $\frac{3^{100}-3^{98}}{3^{100}+3^{98}}$
