Laws of exponents for real numbers a and b and integers m and n :

Rule	Example	Rule	Example
$a^{m} \cdot a^{n}=a^{m+n}$	$5^{2} \cdot 5^{4}=5^{6}$	$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$	$\left(\frac{2}{3}\right)^{4}=\frac{2^{4}}{3^{4}}=\frac{16}{81}$
$\frac{a^{m}}{a^{n}}=a^{m-n}$	$\frac{x^{12}}{x^{4}}=x^{8}$	$a^{-n}=\frac{1}{a^{n}}$	$5^{-3}=\frac{1}{5^{3}}=\frac{1}{125}$
$a^{0}=1$	$10^{0}=1$	$\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}$	$\left(\frac{2}{3}\right)^{-4}=\left(\frac{3}{2}\right)^{4}=\frac{3^{4}}{2^{4}}=\frac{81}{16}$
$(a \cdot b)^{n}=a^{n} \cdot b^{n}$	$(5 x)^{2}=5^{2} \cdot x^{2}=25 x^{2}$	$\frac{1}{a^{-n}}=a^{n}$	$\frac{1}{x^{-2}}=x^{2}$
$\left(a^{m}\right)^{n}=a^{m \cdot n}$	$\left(3^{2}\right)^{4}=3^{8}$		

NOTE: These exercises involve the first five rules involving whole number exponents.

1. Evaluate the following expressions. Show the exponent meaning in your work.
(a) 2^{3}
(b) $(-4)^{2}$
(c) $(-6)^{0}$
(d) $3 \cdot 4^{2}$
(e) $\left(\frac{3}{2}\right)^{3}$
(f) $\left(\frac{1}{4}\right)^{-2}$
2. Evaluate each expression for the given value of x. Show the substitution and each "order of operation step toward the solution.
(a) $2 x^{2} ; x=5$
(b) $(2 x)^{2} ; x=5$
(c) $\frac{x^{4}}{4} ; x=-2$
(d) $5-2 \mathrm{x}^{2} ; \mathrm{x}=-3$
3. True or False. Explain your reasoning. $(-3)^{4}=-3^{4}$
4. Simplify. Use only positive exponents in your answers. Show the exponent rules steps.
(a) $x^{5} \cdot x^{3} \cdot x^{2}$
(b) $\frac{y^{10}}{y}$
(c) $\left(\frac{x}{3}\right)^{2}$
(d) $\left(-4 x y^{3}\right)^{2}$
(e) $\left(b^{2}\right)^{3}$
(f) $\frac{-24 x^{2} y^{6} z}{-3 x^{2} y^{4} z^{3}}$
5. Make up three problems of your own, and show correct use of the exponent rules toward the solution.
(a)
(b)
(c)
