Linear Regression/Correlation

Correlation Coefficient (r or R): a number that shows the strength and type of relationship between two variables

$$
\begin{aligned}
& r=\frac{n(\Sigma x y)-(\Sigma x)(\Sigma y)}{\sqrt{\left[n\left(\Sigma x^{2}\right)-(\Sigma x)^{2}\right]\left[n\left(\Sigma y^{2}\right)-(\Sigma y)^{2}\right]}} \\
& -1 \leq r \leq 1
\end{aligned}
$$

The equation for the line of best fit or the "least squares" regression line is given by $y^{\prime}=a+b x$, where
$\mathrm{a}=\frac{(\Sigma \mathrm{y})\left(\Sigma \mathrm{x}^{2}\right)-(\Sigma \mathrm{x})(\Sigma \mathrm{xy})}{\mathrm{n}\left(\Sigma \mathrm{x}^{2}\right)-(\Sigma \mathrm{x})^{2}} \quad \mathrm{~b}=\frac{\mathrm{n}(\Sigma \mathrm{xy})-(\Sigma \mathrm{x})(\Sigma \mathrm{y})}{\mathrm{n}\left(\Sigma \mathrm{x}^{2}\right)-(\Sigma \mathrm{x})^{2}}$

The coefficient of determination is given by

$$
\mathrm{r}^{2}=\frac{\text { explained variation }}{\text { total variation }}
$$

